Search for new quarks with the ATLAS detector

G. Azuelos, on behalf of the ATLAS Collaboration

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

AUGUST 3 - 10, 2016 CHICAGO

Outline

- * Motivation
- $\ast\,$ Summary of results from Run1 at 8 TeV
- * Selected recent results at $\sqrt{s} = 13$ TeV with 3.2 fb⁻¹
 - $\odot\,$ Events with b-jets and same-sign leptons :
 - $\circ\,$ VLQ $TT,\,BB,\,T_{5/3}T_{5/3}$ and 4-top analysis $\underline{\rm ATL-CONF-2016-032}$
 - \odot lepton+jets final state:
 - Vector-like *TT* pair and four tops <u>ATL-CONF-2016-013</u>, <u>ATL-CONF-2016-020</u>
 - Single production
 - $\circ \text{ VLQ } T/Y \rightarrow Wb$ <u>ATL-CONF-2016-072</u>

Heavy quarks

* Fourth generation chiral quarks are ruled out

- \odot precision electroweak measurements
- \odot in context of SM,
 - $\circ~$ would enhance Higgs production by a factor $\sim~9$
 - $\circ~$ contributes to Higgs quartic coupling λ and leads to vacuum instability

✤ Vector-like quarks

- unlike SM, both L and R chiralities are in the same SU(2) representation: singlets, doublets or triplets
- $\odot\,$ mass does not arise from Yukawa couplings

$$\begin{array}{c} T_{L,R}^{2/3}, & B_{L,R}^{-1/3} \\ \left(\begin{array}{c} T^{5/3} \\ T^{2/3} \end{array}\right)_{L,R}^{2/3}, & \left(\begin{array}{c} T^{2/3} \\ B^{-1/3} \end{array}\right)_{L,R}^{2/3}, & \left(\begin{array}{c} B^{-1/3} \\ Y^{-4/3} \end{array}\right)_{L,R} \end{array} \right) Aguilar-Saavedra et al., 1306.0572 \\ \left(\begin{array}{c} T^{5/3} \\ T^{2/3} \\ B^{-1/3} \end{array}\right)_{L,R}^{2/3}, & \left(\begin{array}{c} T^{2/3} \\ B^{-1/3} \\ Y^{-4/3} \end{array}\right)_{L,R} \end{array} \right)$$

• top partners enter in radiative corrections and protect Higgs mass from quadratic divergence with Q²: composite Higgs models, Little Higgs, extra dimensions

Pair production of 3rd generation partners

In the limit of very high mass, the vlq' BR's follow

 $BR(Q \rightarrow Wq): BR(Q \rightarrow Zq): BR(Q \rightarrow Hq) = 2:1:1$

Aguilar-Saavedra, 1306.0752

ICHEP 2016

Previous limits at 8 TeV from ATLAS

- ▶ pair-production in Run I:
 - same-sign dileptons: JHEP10(2015) 150, (1504.04605)
 - $\circ \ {\rm m(B,\,singlet)} > 620 \ {\rm GeV}$
 - $\circ m(T, singlet) > 590 \text{ GeV}$
 - $\circ \ m(T_{5/3}) > 750 \ {\rm GeV}$
 - Zb/t + X: JHEP11(2014)104, (1409.5500)
 - \circ m(B in (B,Y) doublet) > 755 GeV
 - Wt + X: PRD91, 112011 (2015)
 - $\circ \ m(T_{5/3}) > 840 \ {\rm GeV}$
 - Q → Hb, Ht, Wb + X: JHEP08(2015) 105, (15050.04306)
 - $\circ \ \mathrm{m(T\ in\ (T,B)\ doublet)} > 855\ \mathrm{GeV}$
 - $\circ \ m(Y \ in \ (B,Y) \ doublet) > 770 \ GeV$
 - $\circ m(\mathrm{B,\,singlet}) > 735~\mathrm{GeV}$
- single production
 - \circ T/Y Wb (1602.05606)
 - $\circ~m(T/Y) > 950~{\rm GeV}~({\rm for~coupling}=1)$
- * single production via heavy gluon

•
$$G^* \rightarrow Bb \rightarrow Hbb \rightarrow 4b$$
 (1602.06034)
• m(B) vs m(G*)

b-jets, same-sign leptons, missing E_T

b-jets, same-sign leptons, missing E_T

ATLAS-CONF-2016-032

- **★** 4-top
 - $\odot\,$ SM: low cross section: ~9.2 fb at 13 TeV
 - $\circ~$ same sign leptons, missing $E_{T},$ multiple light-quark and b jets
 - contact interaction
 - $\circ\,$ compositeness, sgluons, \ldots

$$\mathcal{L}_{4t} = \underbrace{\frac{C_{4t}}{\Lambda^2}}_{\left(\bar{t}_{\mathrm{R}}\gamma^{\mu}t_{\mathrm{R}}\right)} \left(\bar{t}_{\mathrm{R}}\gamma_{\mu}t_{\mathrm{R}}\right)$$

- \odot two universal extra dimensions under real projective plane geometry (2UED/RPP)
 - KK parity conservation $(-1)^{k+\ell}$
 - \circ dark matter candidate

$$m_{KK} = m^{(1,0)} = \frac{1}{R_4}$$
 $\xi = \frac{R_4}{R_5}$ $m^{(1,1)} = \sqrt{1 + \xi^2} m_{KK}$

Cacciapaglia et al., 0907.4993

b-jets, same-sign leptons, missing E_T

* Signal Basic signatures:

ATLAS-CONF-2016-032

⊙ same-sign leptons, high H_T, MET, number of jets, b-jets → 8 event categories for signal regions

- ✤ Backgrounds
 - $t\bar{t}V, t\bar{t}WW, t\bar{t}H$ MadGraph rescaled to NLO VV, VVV Sherpa
 - $\rightarrow\,$ systematic uncertainties on cross section 8-57%, depending on signal region
 - \odot Detector-related backgrounds
 - \circ charge mis-ID
 - probability measured in $Z \rightarrow ee$ events, as a function of p_T and η
 - background estimated from opposite sign ee and $e\mu$ events
 - systematic uncertainty ~ 3-8 % of total background
 - $\circ~$ non-prompt and fake leptons
 - estimated by matrix method: measure how "loose" and "tight" leptons relate to "real" and "fake" leptons and derive the fraction of "fake" leptons in the data.
 - systematic uncertainty ~ 13-26% of total background

ICHEP 2016

Limits for B and T VLQ's

ICHEP 2016

T_{5/3}, 4-t contact and 2UED/RPP ATLAS-CONF-2016-032 10^{3} $\sigma(pp \to T_{5/3}\overline{T}_{5/3}) \, [pb]$ ATLAS Preliminary Observed limit Expected limit $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ 10^{2} ±1σ SS dilepton / trilepton + b-jets $\pm 2 \sigma$ Theory (NNLO) 10 $T_{5/3}T_{5/3}$ $\sigma(pp \rightarrow 4t) < 95$ fb (SM kinematics) 1 < 67fb (contact interaction) = $C_{At}/\Lambda^2 < 3.5 \text{ TeV}^{-2}$ 10⁻¹ $m_{_{KK}} > 1.4 \text{ TeV} (R_4 = R_5)$ 10^{-2} $m_{T_{c}}$ > 990 Ge 10⁻³ 600 800 1000 1200 1400 m_{T_{5/3}} [GeV] 300 ξ=R₄/R₅ 2.4 ATLAS Preliminary Excluded region $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ 250 Observed 2.2 2UED/RPP model --- Expected SS dilepton / trilepton + b-jets 200 2 ATLAS Preliminary $\pm 1\sigma$ $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$ $BR(A^{(1,1)} \rightarrow t\bar{t})=100\%$ $\pm 2 \sigma$ 1.8 150 SS dilepton / trilepton + b-jets 1.6 // Excluded 100 SS dilepton / trilepton + b-jets, Run 1 — Observed 1.4 JHEP 1510 (2015) 150 SS dilepton / trilepton + b-jets, Run 1 ---- Expected I+jets, Run 2 50 JHEP 1510 (2015) 150 ATLAS-CONF-2016-020 ±1σ 1.2 I+iets, Run 2 ±2σ ATLAS-CONF-2016-020 0<u>/</u> d.9 1.3 1.5 1.2 1.4 8 9 11 12 13 1 1.1 1.6 1.7 1.8 6 10 m_{KK}=1/R₄ [TeV] Λ [TeV] $m_{_{KK}}$ > 4 TeV for symmetric 2UED/RPP case

0 ≜

ICHEP 2016

VLQ, 4-tops, in lepton + jets

 $T\bar{T} \rightarrow HtHt, HtZt, HtWb$ also : $ZtZt, ZtWb, Z \rightarrow b\overline{b}$

Selection:

- \odot one isolated lepton
- $E_{T}^{miss} > 20 \text{ GeV}$ \odot
- \odot m_T(W) > 60 GeV

ATL-CONF-2016-013

- \odot up to 6-8 jets, \geq 2 b-tagged
- \odot 0-2 high mass jets from boosted tops when $p_T(top) > 300 \text{ GeV}$
- Fraction of jets / 10 Ge/ \odot large-R jets (R=1.0) with at least 2 small-R (R=0.4) subjets
 - trimmed: remove small-R subjets with $p_T < 5\%$ of p_T of large-R jet

ATL-CONF-2016-20

- \odot 4-top analysis
- 9-10 jets \odot
- at least 3-4 b-jets \odot

VLQ, 4-tops, in lepton + jets

ATLAS-CONF-2016-013 ATLAS-CONF-2016-020

Backgrounds

 $t\overline{t} + jets, Wt \rightarrow$ Powheg-Box, MadGraph, rescaled to NNLO W + jets, VV \rightarrow Sherpa2.1, rescaled to NNLO ttV, ttH MadGraph5 aMC@NLO

Systematic uncertainties

- \odot luminosity, 5%
- \odot lepton reconstruction, ~ 1.7%
- jet energy scale, resolution, $\sim 6\%$ (signal), $\sim 13\%$ (tt background)
- \odot heavy-flavor jet tagging efficiencies
- \odot main background modelling uncertainties
 - $\circ~$ tt, $\sim~6\%$
 - $\circ~$ tt + b's, ${\sim}50\%$
 - $\circ~$ V+jets, dibosons, ~ 5%
 - $\circ~$ ttV, ttH, 11-13%
 - $\circ~$ misidentified lepton: 50%

★ Limit extraction

• Likelihood fit of all signal regions, with systematic errors as nuisance parameters

 $m_{\tau} > 900 \text{ GeV} (\text{if BR}(T \rightarrow Ht) = 1)$ >750 GeV (T singlet) > 800 GeV (T in doublet) $\sigma(pp \rightarrow 4t) < 190$ fb (SM kinematics) <140 fb (contact interaction)

 $|C_{4t}|/\Lambda^2 < 4.8 \text{ TeV}^{-2}$

Single Production T,Y \rightarrow Wb

ATLAS-CONF-2016-072 * Single production is sensitive to high mass, if coupling is sufficiently large Aguilar-Saavedra et al., 1306.0572

★ Coupling QWb

• mixing term

Aguilar-Saavedra et al., 1306.0572

- $_{\circ}~$ similarly for b-B mixing
- or, more generally, phenomenological Lagrangian, in effective model with coupling $c_{L/R}^{Wb} = \sqrt{2} \sin \theta_{L/R}$ $\sigma(Q\bar{b}) \sim (c_L^2 + c_R^2)$ O. Matsedonskyi et al., 1409.0100

Single Production T,Y → Wb

ATLAS-CONF-2016-072

ICHEP 2016

Limit on T, Y from single production

Conclusion

Improved limits on vector-like quarks with first 3.2 fb⁻¹ at 13 TeV

* pair production: • same-sign leptons ATLAS-CONF-2016-032 m(B singlet) > 830 GeV m(T singlet) > 780 GeV $m(T_{5/3}) > 990 \text{ GeV}$ $|c_{4t}|/\Lambda^2 < 3.5 \text{ TeV}^{-2}$

 $\sigma(4t) < 95/67$ fb (SM, contact kinematics) $m_{KK} > 1.4$ TeV (2ED/RPP, $R_4 = R_5$)

* single production

$$\begin{aligned} \text{ATLAS-CONF-2016-072} \\ m_Y > 1.44 \text{ TeV} \quad \left(\text{for } \sqrt{\left(c_L^{Wb} \right)^2 + \left(c_r^{Wb} \right)^2} = 1/\sqrt{2} \right) \\ \sqrt{\left(c_L^{Wb} \right)^2 + \left(c_r^{Wb} \right)^2} < 0.33 \text{ for Y quark} \\ < 0.45 \text{ for T quark} \\ T - t \text{ mixing angle dominantly } \theta_L^t, \ T \text{ singlet} \\ \sin \theta_L < 0.32 - 0.69 \text{ for } m(T) \text{ between 1 TeV and 1.5 TeV} \\ B - b \text{ mixing angle dominantly } \theta_R^b, \ (B, Y) \text{ doublet} \\ \sin \theta_R < 0.23 - 0.56 \text{ for } m(Y) \text{ between 1 TeV and 1.5 TeV} \end{aligned}$$

• lepton + jets ATLAS-CONF-2016-013 ATLAS-CONF-2016-020

```
m(T \text{ singlet}) > 750 \text{ GeV} (900 \text{ GeV if } BR(T \rightarrow Wb) = 1)
m(T \text{ doublet}) > 800 \text{ GeV}
|c_{4t}| / \Lambda^2 < 4.8 \text{ TeV}^{-2}
```

```
\sigma(4t) < 190/140 fb (SM/contact kinematics)
```

```
m<sub>KK</sub> > 1.45 TeV
```

```
More data coming in fast

→ expect stronger limits

(or discovery!)
```


Limit on mixing angles

