Searches for Leptoquarks and Compositeness at CMS Seth I. Cooper, on behalf of the CMS Collaboration August 6, 2016 #### Introduction Several CMS searches for leptoquarks and compositeness with pp data collected at 13 TeV at the LHC shown here: - First and second generation leptoquarks (2.6, 2.7 fb⁻¹) - Third generation leptoquarks (as part of W_R search) in two channels, including $\tau_{had}\tau_{had}$ bb and $\tau_{had}\ell$ bb channel (2.1, 12.9 fb⁻¹) - Excited leptons (2.7 fb⁻¹) Excited quarks presented in separate talk on multijets (S. Bhattacharya) Three new results for ICHEP2016 in this talk [green] #### Full list of CMS results: http://cms-results.web.cern.ch/cms-results/public-results/publications/ #### **CMS** Detector ## Leptoquarks: Theory in brief - New symmetry between quarks and leptons. Some beyond the SM models predict leptoquarks arising from this symmetry (Pati-Salam, GUTs, technicolor, etc.) - Leptoquark (LQ): boson coupling to both quarks and leptons (carries baryon and lepton numbers) and fractional electric charge. Concentrating on scalar case. - Consider pair-produced particles: Dominant gg production mode at LHC is virtually independent of the lepton/quark/ LQ coupling strength. - Separate analysis by lepton generation: FCNC constraints imply no intergenerational mixing - Branching ratio LQ $\rightarrow \ell q$ is treated as free parameter β - Final states covered in this talk: - $1^{st}/2^{nd}$ generation: $\ell j + \ell j$, for $\ell = e, \mu$ - 3^{rd} generation: $\tau_{had}b \ell b$ for $\ell = e$, μ ; $\tau_{had}b + \tau_{had}b$ # LQ 1st and 2nd generation analysis overview 2 high p_T leptons and 2 high p_T jets are a striking signature Use single electron or muon trigger - 2 isolated high-p_T leptons (p_T > 50 GeV) - 2+ high-p_T jets (p_T > 50 GeV) - Final selection variables: - $S_T = \sum p_T(\ell,j)$ for $\ell 1, \ell 2, j 1, j 2$ - $M_{\min}(\ell j)$ - M(ℓℓ) - Minimal S_⊤ requirement (300 GeV) - Validate backgrounds vs. data at preselection - Optimize final selections as a function of LQ mass #### Backgrounds: Z+Jets: MC shape, normalized in Z peak TTbar+Jets: eµjj data-driven shape/normalization (LQ2); MC normalized to eµjj data (LQ1) QCD Multijets (LQ1: data-driven fake rate) Others: Diboson, single top, etc.: MC # LQ 1st/2nd generation #### CMS EXO-16-043 New for ICHEP2016 Good data/MC agreement observed at preselection 1st generation LQ mass limit is set at 1130 GeV for β =1 - Previous CMS: 1010 GeV (8 TeV, 19.7 fb $^{-1}$); ATLAS 1100 GeV (13 TeV, 3.2 fb $^{-1}$) 2nd generation LQ mass limit is set at 1165 GeV for β =1 - Previous CMS: 1080 GeV (8 TeV, 19.7 fb⁻¹); ATLAS 1050 GeV (13 TeV, 3.2 fb⁻¹) # W_R/LQ 3rd generation Left-Right Symmetric standard model Heavy right-handed neutrinos and righthanded W_R Also sensitive to scalar leptoquarks decaying to $\tau\tau bb$ #### $\tau\tau jj$ final state #### Require: - 1 (or 2) isolated τ_{had} , high p_T (50-70 GeV) - 2 high p_T jets (50 GeV) - τ , jet ℓ , jet τ , ℓ spatial separation Calculate $S_T(\tau, \tau, j, j, MET)$ # W_R/LQ 3rd generation: $\tau_{had}\tau_{had}$ bb Trigger: double τ $M(\tau\tau) > 100 \text{ GeV}$ MET > 50 GeV Examine S_T , $m(\tau,\tau,j,j,MET)$ QCD multijet background dominates Data-driven ABCD method (MET, isolation of τ) Others (ttbar+jets, DY+jets, etc., via MC) # W_R/LQ 3rd generation: $\tau_{had}\tau_{had}bb$ Limit M(LQ₃) > 740 GeV Limit M(W_R) > 2.31 TeV [m(N τ) = 0.5 m(W_R)] # W_R/LQ 3rd generation: $\tau_{had}\ell bb$ #### CMS EXO-16-023 New for ICHEP2016 12.9 fb⁻¹ (13 TeV) → Observed tt+jets --- LQ 900 GeV SingleTop Electroweak QCD multijet Uncertainty LQ 2016 pp data $\tau_{had} \ell bb$ channel Trigger: single e/µ Require 1 b-tagged jet (LQ) $M(\tau_{had}, j) > 250 \text{ GeV (LQ)}$ $MET > 50 \text{ GeV } (W_R)$ $M(\tau_{had}, \ell) > 150 \text{ GeV } (W_R)$ ttbar background dominates MC, checked with eµ data Others (W+jets, DY+jets, QCD, etc., via MC) Limit M(LQ₃) > 900 GeV Limit M(W_R) > 3.2 TeV [m(N τ) = 0.5 m(W_R)] ## Compositeness: theory overview As far as we know, quarks and leptons are elementary particles But if they in fact have substructure, it could help answer some open questions in the standard model, such as the mass hierarchy of quarks and leptons Constituents known as <u>preons</u>, bounded by a new strong gauge interaction of scale Λ (Pati and Salam) Can lead to production of excited quarks and leptons Direct evidence of compositeness Known ℓ , q: ground states Flavor shared with SM particle Look in $\ell\ell\gamma$ final state $$\mathcal{L}_{CI} = \frac{g^{*2}}{2\Lambda^2} j^{\mu} j_{\mu}$$ ## Excited leptons: analysis overview CMS EXO-16-009 New for ICHEP2016 - Use double electron or double muon trigger - Select photon - Impose photon/lepton separation $\Delta R > 0.7$ - Veto Z peak: $M(\ell \ell) > 116 \text{ GeV}$ - Two highest- p_T leptons paired with photon: $M_{\ell \gamma}$ min, max - Background: DY, diboson, ttbar+jets - Data-driven QCD jet background, misidentified photon from MC (checked with data) ## Excited leptons: analysis overview CMS EXO-16-009 New for ICHEP2016 Signal forms an "L" shape in $M_{\ell\nu}$ min vs. max Create signal region from 2-D regions ## Excited leptons: results CMS EXO-16-009 New for ICHEP2016 Search windows defined in $M_{\ell \gamma}$ min, max Limits on crosssection(x)branching ratio for excited leptons $M(e^*) > 2.8 \text{ TeV (electron)}$ $M(\mu^*) > 3.0 \text{ TeV (muon)}$ (8 TeV CMS mass limit: 2.5 TeV) Also limits on Λ itself: $\Lambda > 15 \text{ TeV}$ ## **Summary** Wide range of CMS results on 2015 and 2016 data from leptoquark and compositeness searches - Leptoquark searches extend previous LHC Run I limits with 2015 data (1st gen., 2nd gen.) - LQ3 in two channels also extend previous limits, with the $\tau_{had}\ell$ bb channel results using 2016 data - Excited lepton results extend limits on the compositeness scale to ~15 TeV Overall, 3 new results for ICHEP2016 [green] presented here Expect results with 2016 data from all analyses # Backup # Optimized Thresholds (LQ2) | > | |---| |