

Heavy Resonances at CMS

- Search for Z' in dilepton channel
 - Bump search in dielectron and dimuon channels (and combination)
 - EXO-16-031 (<u>2016</u>) NEW!
- Search for lepton flavor violation in dilepton channel
 - Heavy particle decays into emu final state
 - **EXO-16-001** (2015)
- Search for Z' in ditau channel
 - **EXO-16-008** (2015)
- Search for W'
 - lepton+MET channel: EXO-15-006 (2015)
 - tau+MET channel: EXO-16-006 (2015)
- Search for X→Zγ
 - Dilepton+γ channel: EXO-16-021 (2012+2015), EXO-16-034 (2016) NEW!
 - Dijet+γ channel: EXO-16-025 (2012), EXO-16-035 (2016)

NEW!

NEW!

Introduction

- Many BSM models predict the existance of new heavy particles
- The new heavy particles can decay into leptons
 - Provide clean signature with respect to hadronic decay modes
 - But small branching fraction
- Leptonic decay modes are categorized
 - Electron and muon channels (and their combination)
 - Tau channel treated separately
 - Neutrinos leave signature as MET (missing transverse energy)
- Searches probe a large range of energy up to very high mass region
 - From O(100 GeV) to O(few TeV)
- Analyses are usually very sensitive to sqrt(s)
 - Discovery potential is increased dramatically at 13 TeV
 - 13 TeV results with 2015 dataset defeat 8 TeV already
- In this talk we present NEW RESULTS at 13 TeV with 2016 dataset

Luminosity Ratio

J. Stirling

Integrated Luminosity in Run 2

Successful operation at 13 TeV!

CMS Integrated Luminosity, pp

- Good to use for physics: 13/fb (up to July 15th)
- Preliminary uncertainty on luminosity for 2016 dataset: 6.2%

August 6th, 2016 **H.D. Yoo, SNU** slide **6**

Search for Z' in Dilepton (ee, μμ)

μμ) NEW!

- Model independent shape-based search for a narrow resonance
 - Further interpretations of high mass dilepton
- Standard CMS high pT muon/ electron id and event selection are used
 - Isolated e/mu with pT > 35/53GeV
- Dominant background
 - Drell-Yan, ttbar, tW, diboson
 - Jets misidentified as leptons (W+jets, QCD) in the dielectron channel

Search for Z' in Dilepton (ee, µµ)

CMS-PAS-EXO-16-03°

Interpretation

- Limit on the ratio $R_{\sigma} = \frac{\sigma(pp \to Z' + X \to II + X)}{\sigma(pp \to Z + X \to II + X)}$
- Spin-1 assumed for the new resonance
- Signal with various widths: 0.6% (Z'_{w}), $3\%(Z'_{SSM})$
- Z'_{Ψ} and Z'_{SSM} exclude < 3.5 TeV and 4.0 TeV

Search for e-µ Resonance

RPV SUSY with T sneutrino as LSP and QBH

- Selection
 - Iso. high pT e/μ with 35/53 GeV
 - Select e-µ pair with highest invariant mass
- Shape based limits

Exclusion:

RPV: 3.3 TeV

$$(\lambda_{311}^1 = \lambda_{132} = \lambda_{231} = 0.2$$

QBH: 4.5 TeV

(n = 6)

CMS-PAS-EXO-16-001

Search for Z' in Ditau

Consider various channels

$$T_h^-T_h^-$$
, $T_e^-T_h^-$, $T_\mu^-T_h^-$, $T_e^-T_\mu^-$

 Main backgrounds: ttbar, dibosons, Drell-Yan, multijet from QCD

CMS-PAS-EXO-16-008

Selection

- High iso. pT lepton
- Back-to-back T events

Search for W' -> lepton+MET (e or μ)

- New heavy gauge bosons can appear in CMS-PAS-EXO-15-006 many BSM models: SSM, RS gravitons, composite Higgs, etc.
- Search strategy $M_T = \sqrt{2p_t^l E_T^{miss}(1 \cos \Delta \phi(\vec{p}_t^l, \vec{p}_T^{miss}))}$
- Event selection
 - One iso. high pT lepton: > 130/53 GeV (e/ μ)
 - Ratio of pT_i/MET : 0.4 < pT_i/MET < 1.5 and $|dphi(pT_i, MET)| > 2.5$
 - Veto on additional leptons with pT > 35/25 GeV

Search for W'→ lepton+MET (e or µ)

Interpretations

- Limits are calculated using the full shape of the SSM W' distribution
- Signal acc * eff ~ 75% at M(W') = 3 TeV
- Main systematics: acc*eff (3-8%), muon mom.
 scale (10-20%), luminosity (2.7%)
- Exclude: SSM M(W') below 4.4 TeV
 2.2 fb⁻¹ (13 TeV)

CMS-PAS-EXO-15-006

Search for W'→ tau+MET

Search strategy

- Similar to e/µ+MET channel
- M_T distribution more spread due to two neutrinos
- Kinematic distributions are different

Event selection

- One iso. high pT hadronic tau: > 80 GeV
- Ratio of pT_{tau}/MET : 0.7 < pT_{tau}/MET < 1.3 and $|dphi(pT_{tau}, MET)| > 2.4$

 $_{\rm u}$, MET)| > 2.4

CMS-PAS-EXO-16-006

Exclude: SSM M(W') below 3.3 TeV

Search for Zy Resonance (Z→II) NEW!

CMS-PAS-EXO-16-034

Search strategy

- Bump search in $M(Z\gamma)$ spectrum in dilepton channels: eey, $\mu\mu\gamma$
- Search region: $M(Z\gamma) > 300 \text{ GeV}$
- Fit the data with background model
 - Same technique of diphoton search

$e/\mu pT > 25/20$ GeV for leading (subleading)

- 50 < M(Z) < 130GeV
- Photon pT > 40GeV, $dR(I, \gamma) >$ 0.4
- Photon pT > $(40/150)*M(Z\gamma)$

Results with new 2016 data

Search for Zy Resonance $(Z\rightarrow II)$

CMS-PAS-EXO-16-034

Interpretation

- No significant excess above expected backgrounds is observed
- − Limit on σ * Br(X \rightarrow Z γ \rightarrow II γ) / Br(X \rightarrow Z γ)
- Systematic uncertainties: 5% for lepton and photon efficiencies, 3-4% for trigger, ~1% for electron/muon energy/momentum scale corrections

August 6th, 2016 H.D. Yoo, SNU slide 15

Search for Zγ Resonance (Z→qq)-

CMS-PAS-EXO-16-025, 035

Search strategy

- − Bump search in M(Zγ) spectrum in dijet channel: Spin-0 X \rightarrow Zγ, Z \rightarrow qq
- Use boosted topology (Z → J) and increased bracking fraction to improve S/B
- Exploit b-tagging to further discriminate backgrounds
- Higher acceptance to compare to dilepton channel: advantage at high mass

Selection

- $\gamma pT > 170 (200) \text{ GeV for 8 (13) TeV with EB only}$
- Z identification
 - Jet pT > 170 (200) GeV for 8 (13) TeV
 - 70 (75) < M(J) < 110 (105) GeV for 8 (13) TeV
 - · Subjet b-tagging
- pT(γ) / M($Z\gamma$) > 0.34

Search for Zγ Resonance (Z→qq)

Background estimation from smooth fit

$$\frac{dN}{dM_{Z\gamma}} = P_0 \times \left(\frac{M_{Z\gamma}}{\sqrt{s}}\right)^{P_1 + P_2 \times \log\left(\frac{M_{Z\gamma}}{\sqrt{s}}\right)}$$

Search for $Z\gamma$ Resonance $(Z\rightarrow qq)$

CMS-PAS-EXO-16-025, 035

- No significant excess observed
 - Set 95% CL limit

Summary

- Many new searches for BSM physics with heavy resonances in dilepton final state are presented
 - Many new results with 2016 dataset!
 - More can be found here:
 - http://cms-results.web.cern.ch/cms-results/public-results/publications/
- Improved limits compared to the previous results
- No significant excess beyond the prediction is observed
- Much more results are coming soon with new data

Stay tuned!

Back Up

Dimuon Inv. Mass Spectrum in Run 2

Search for Z' in Dilepton (ee. uu)

2015 results

- $M(Z'_{SSM}) > 3.15 \text{ TeV}$
- $M(Z'_{\psi}) > 2.60 \text{ TeV}$

CMS-PAS-EXO-15-005

August 6th, 2016 **H.D. Yoo, SNU** slide **22**

Z' Projection at 14 TeV

- Projection of discovery reach at 14 TeV with 300, 1000, 3000/fb
- Used in Snowmass white paper

Studies are based on generator level extrapolations and scaling of

8 TeV results

Important to understand the future expectation to decide the detector upgrade plan

Tau Decays

Figure 3: The graphs illustrate the reconstruction of the HPS reconstruction, showing the charged hadrons as lines and the strips from the neutral pions as blue boxes. Considered tau decays: the two left graphs illustrating the decays $\tau \to h^{\pm}\pi^{0}$ ($\mathcal{B} \sim 26\%$) and $\tau \to h^{\pm}\pi^{0}\pi^{0}$ ($\mathcal{B} \sim 9.5\%$) would both lead experimentally to a "one-prong" signature. The two graphs on the right lead to an observed "three-prong" signature from the decays $\tau \to h^{\pm}h^{\pm}h^{\mp}$ ($\mathcal{B} \sim 9.8\%$) and $\tau \to h^{\pm}h^{\pm}h^{\mp}\pi^{0}$ ($\mathcal{B} \sim 4.8\%$). Not shown is the one prong decay without a π^{0} ($\mathcal{B} \sim 11.6\%$).

Search for W'→ tau+MET

Interpretation

CMS-PAS-EXO-16-006

- Limits are calculated using the full shape of the SSM W' distribution Due to large tail at low M_T
- Signal acce * eff ~ 23% at M(W') = 3 TeV
- Main systematics: acc*eff (25%), tau mom. scale (3%), luminosity (4.6%), fake (50%)
- Exclude: SSM M(W') below 3.3 TeV

Search for Zγ Resonance (Z→II)

M(Zγ) invariant mass distribution after full event selection

Search for Zγ Resonance (Z→qq) N

CMS-PAS-EXO-16-025

Background estimation from smooth fit

$$\frac{dN}{dM_{Z\gamma}} = P_0 \times \left(\frac{M_{Z\gamma}}{\sqrt{s}}\right)^{P_1 + P_2 \times \log\left(\frac{M_{Z\gamma}}{\sqrt{s}}\right)}$$

Search for Zy Resonance $(Z \rightarrow qq)$

CMS-PAS-EXO-16-025, 035

- No significant excess observed
 - Set 95% CL limit

