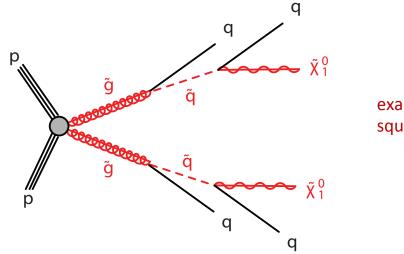
## **Searches for Long-Lived SUSY Particles**

### Laura Jeanty, Lawrence Berkeley National Lab for the ATLAS Collaboration




38<sup>th</sup> International Conference on High Energy Physics 6 August 2016



# Long-lived particles in supersymmetry

- Long-lived particles can arise from
  - Nearly conserved symmetries
  - Small coupling to final state
  - Phase-space suppression due to nearly degenerate masses



example: long-lived gluino if squark mass >> gluino mass

 Can arise in models including split SUSY, anomaly mediated SUSY breaking, and stealth SUSY

## Detector signatures of long-lived heavy particles

depends on LLP lifetime, mass, & decay products

**Disappearing track** 

Direct detection

Isolated / late jets

Indirect detection

Late photons

Indirect detection

Highly ionizing particle

Direct detection

Highly ionizing and slow particle

Direct detection

**Displaced vertex** 

## Detector signatures of long-lived heavy particles

**Disappearing track** 

<u>Phys. Rev. D 88, 112006</u>

### Isolated / late jets

Phys. Rev. D 88, 112003

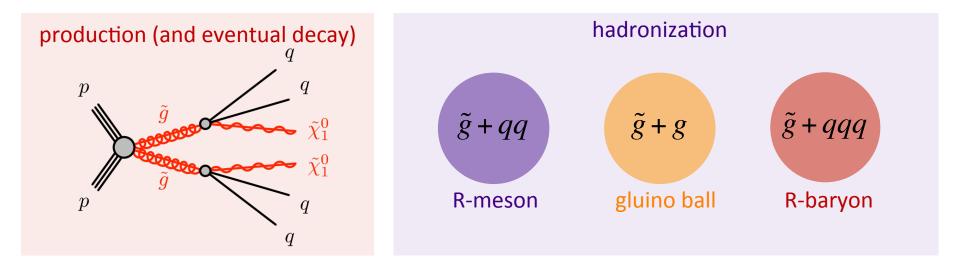
### Late photons

<u>Phys. Rev. D</u> 90, 112005

13 TeV Result Highly ionizing particle Phys. Rev. D 93, 112015

### 13 TeV Result

Highly ionizing and slow particle

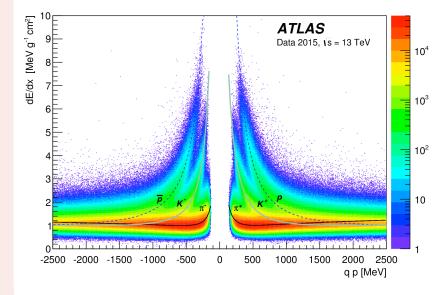

Phys. Let B (2016) 647-665

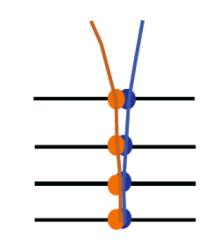
2,07

Displaced vertex

# What is an R-hadron?

- First 13 TeV results focus on strongly produced long-lived particles
- Long-lived gluinos or squarks hadronize into "R-hadrons"

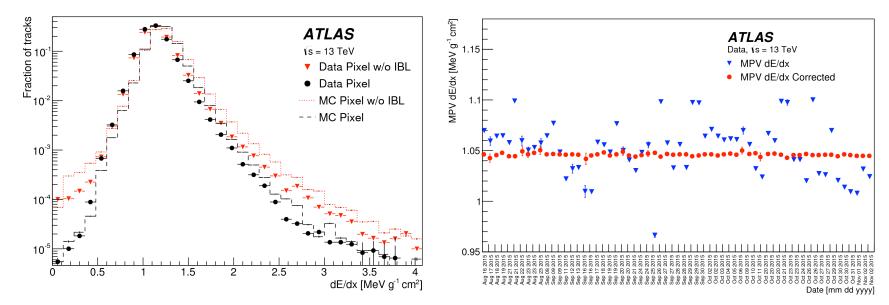




- Experimentally relevant properties
  - Slow,  $\beta < 1 \rightarrow$  late time of arrival in calorimeters and muon system
  - Highly ionizing  $\rightarrow$  dE/dx larger than minimum ionizing particle
  - Little energy lost in hadronic interactions → measured missing transverse momentum (E<sub>T</sub><sup>miss</sup>), used for trigger

# Search for meta-stable R-hadrons

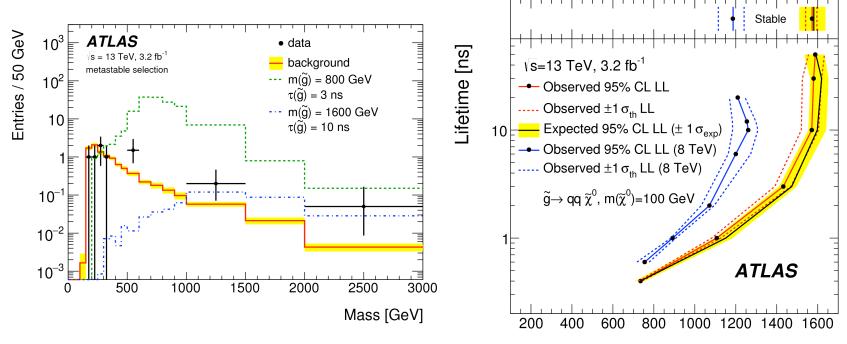
### • Analysis overview

- 3.2 fb<sup>-1</sup> of 2015 data
- Use dE/dx to look for heavy charged particles with lifetimes >= 0.4 ns
- Trigger using E<sub>T</sub><sup>miss</sup>
- Estimate particle mass using dE/dx and momentum
- Background estimated from data
  - low E<sub>T</sub><sup>miss</sup> data region used to derive background dE/dx distribution
  - low dE/dx data region used to derive background momentum, η distributions
- 13 TeV analysis improvements
  - Higher production cross-section
  - Improve background rejection using clusters identified as merged by neural network used in tracking reconstruction
  - Use newly added pixel layer in ATLAS to improve dE/dx measurement





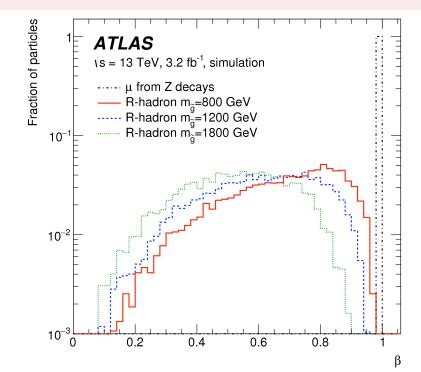

merged clusters identify energy deposits consistent w/ multiple particles 6


# Measuring dE/dx and Mass Calculation

- Estimate particle mass from energy loss dE/dx and momentum
- Calibrate mass in data and simulation using protons, pions, and kaons
- dE/dx measured in Pixel detector in ATLAS
  - new Insertable B-Layer (IBL) adds a fourth measurement point to track dE/dx, improves resolution and reduces Landau tails by 50%
  - ... and requires run-by-run dE/dx correction due to radiation-induced effects in IBL front-ends

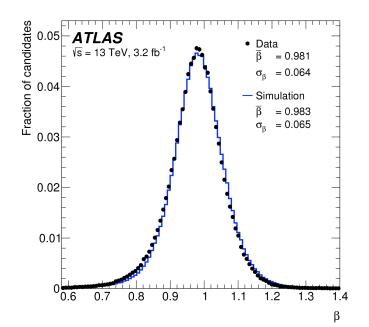


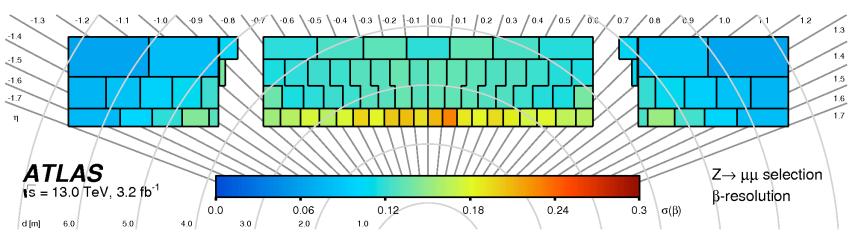
# Results


- Good agreement between background expectation and data
- Mass distribution used to set limits on production cross-section
- Results interpreted for gluino R-hadrons with varying lifetimes, assuming gluino decays to 100 GeV neutralino
  - all other SUSY particles are decoupled



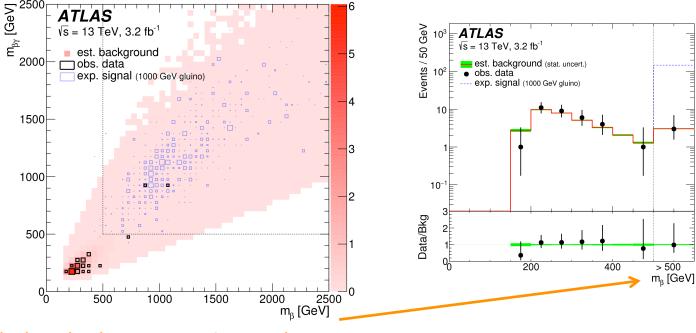
→ Exclude R-hadrons at 95% CL with masses up to 740 - 1590 GeV, depending on lifetime


# Search for stable R-hadrons


- Analysis overview
  - 3.2 fb<sup>-1</sup> of 2015 data
  - Use dE/dx to estimate mass from track βγ
  - Use calorimeter time-of-flight measurement to estimate mass from track β
  - Trigger using missing transverse momentum
  - Background estimated from data
    - sidebands of track momentum,  $\beta$ , and  $\beta\gamma$  distributions in data used to generate background probability distribution functions
    - randomly drawn values are used to estimate background mass distribution



# Measuring β


- Time-of-flight measurement made in tile calorimeter
  - Calibrate timing measurement using Z→ µµ sample in data and simulation
  - 1.3 2.5 ns single calorimeter cell timing resolution
  - → 0.06 0.23 resolution on β





# Results

- Good agreement between background expectation and data
- Limits on production cross-section set based on # events w/ mass above a value dependent on hypothetical R-hadron mass
- Results for gluino, stop, sbottom R-hadrons
  - all other SUSY particles are decoupled



 $\rightarrow$  Exclude R-hadrons at 95% CL with masses up to: 1580 GeV (gluino R-hadrons) 805 GeV (sbottoms)

890 GeV (stops)

Cross section [fb]

10

10<sup>3</sup>

10<sup>2</sup>

10

ATLAS

√s = 13 TeV, 3.2 fb<sup>-1</sup>

1000

1200

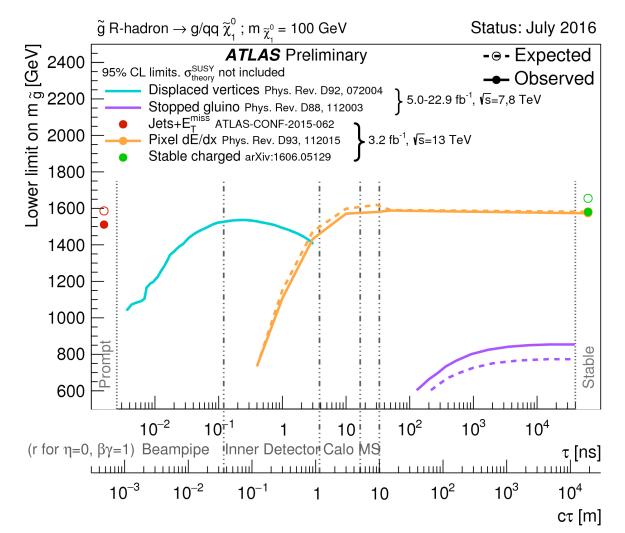
1400

1600

1800

2000 m<sub>gluino</sub> [GeV]

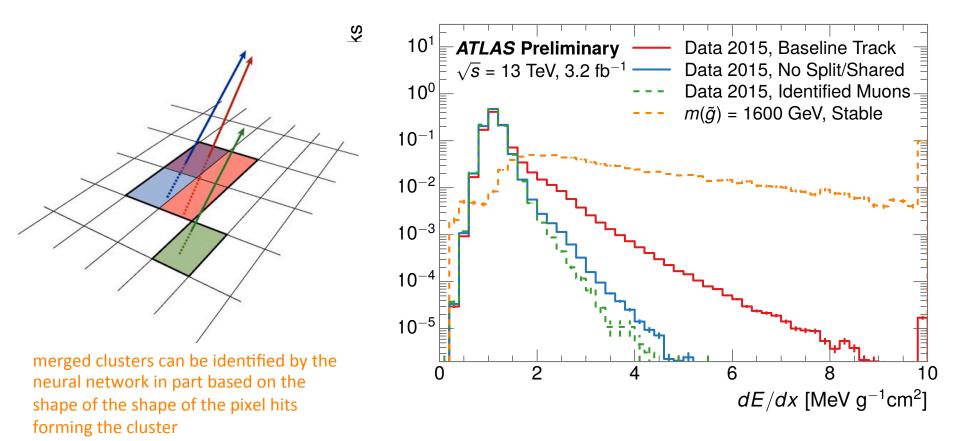
expected ±1o limit expected  $\pm 2\sigma$  limit observed limit √s = 8 TeV theory prediction


8 TeV, 19.1 fb<sup>-1</sup> observed

11

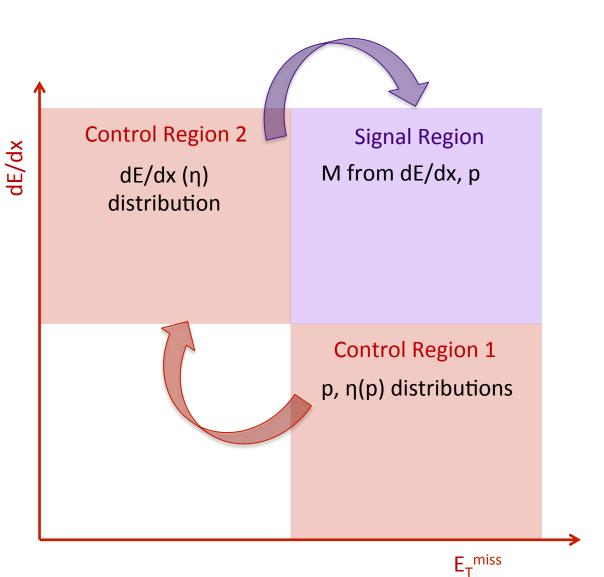
õ 6 016  $\mathbf{m}$ 

# Outlook


- Early 13 TeV results exclude R-hadrons up to 1590 GeV
- Many more production and decay topologies under study now, expect significant improvement over results from 8 TeV



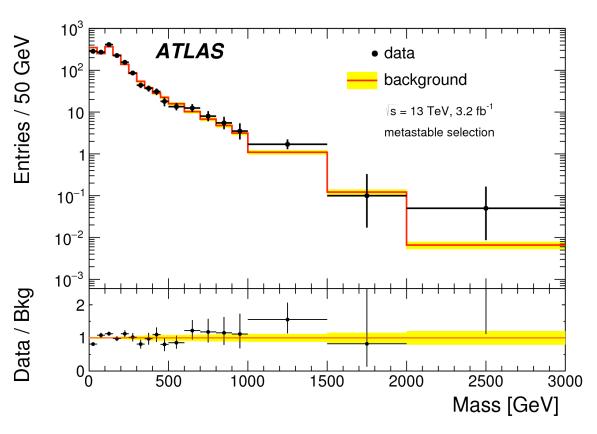
# Backup


# Tracks w/ merged clusters

 Removing tracks which are identified as having at least one cluster which is shared or split with another track significantly reduces the long dE/dx tail from overlapping SM particles

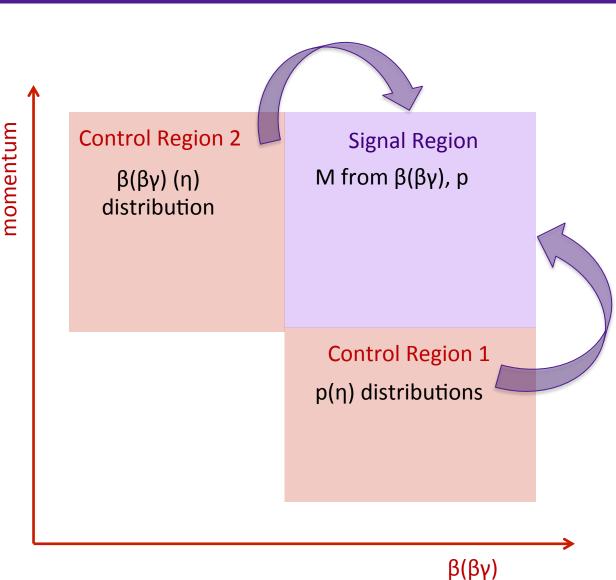


## Meta-stable search: Background estimation


- Background PDFs sampled from two control regions in data
  - dE/dx and E<sub>T</sub><sup>miss</sup> uncorrelated
  - dE/dx, η, and p distributions take from CR to maintain correlation
- Estimated background mass calculated from randomly sampled p, and η(p) and dE/dx (η) from CR
- Normalized in low mass region before ionization
- Validated in momentum region outside signal

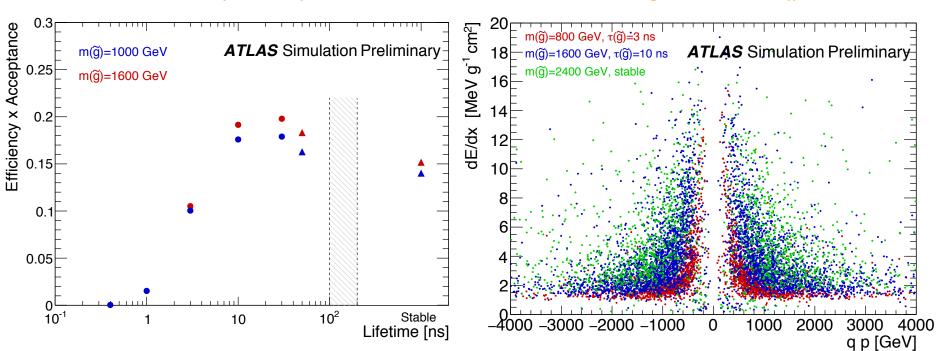


## Meta-stable search: Background estimation


- Background PDFs sampled from two control regions in data
  - dE/dx and E<sub>T</sub><sup>miss</sup>
     uncorrelated
  - dE/dx, η, and p
     distributions take
     from CR to maintain
     correlation
- Estimated background mass calculated from randomly sampled p, and η(p) and dE/dx (η) from CR
- Normalized in low mass region before ionization
- Validated in momentum region outside signal

## Background & data before ionization requirement




## Stable search: Background estimation

- Background PDFs constructed from control regions in data
  - sidebands of track
     momentum and β(βγ)
     region used in several η
     bins
- Random sampling from background PDFs
- Mass constructed from sampled p and β(βγ) values
- Normalized in events that are below  $M_{\beta(\beta\gamma)}$  requirement for signal



# R-hadron signal

• meta-stable R-hadron search



### Efficiency x Acceptance

### Signal dE/dx v. qp

## Event selection

 Meta-stable analysis, shown for 1600 GeV R-hadron with lifetime of 10 ns

| Selection level                                 | Expected signal events   | Observed events in 3.2 fb <sup>-1</sup> |  |  |
|-------------------------------------------------|--------------------------|-----------------------------------------|--|--|
| Generated                                       | $26.0 \pm 0.3$           |                                         |  |  |
| $E_{\rm T}^{\rm miss}$ trigger & preselection   | $24.8 \pm 0.3 \ (95\%)$  |                                         |  |  |
| $E_{\rm T}^{\rm miss} > 130 {\rm ~GeV}$         | $23.9 \pm 0.3 \; (92\%)$ |                                         |  |  |
| Track $p_{\rm T} > 50$ and cluster requirements | $10.7 \pm 0.2$ (41%)     | 368324                                  |  |  |
| Isolation requirement                           | $9.0\pm 0.2~(35\%)$      | 108079                                  |  |  |
| Track $p > 150$ GeV                             | $6.6 \pm 0.2$ (25%)      | 47463                                   |  |  |
| $m_{\rm T} > 130 {\rm ~GeV}$                    | $5.8 \pm 0.2$ (22%)      | 18746                                   |  |  |
| Electron & hadron veto                          | $5.5 \pm 0.2$ (21%)      | 3612                                    |  |  |
| Muon veto                                       | $5.5 \pm 0.2$ (21%)      | 1668                                    |  |  |
| Ionization requirement                          | 5.0 ± 0.1 (19%)          | 11                                      |  |  |

## **Event selection**

• Stable gluino R-hadron search

|                                                                                                  | data      | 800 Ge   | eV   | 1400 G   | eV   | 1600 G   | eV   | 1800 G   | eV   |
|--------------------------------------------------------------------------------------------------|-----------|----------|------|----------|------|----------|------|----------|------|
|                                                                                                  | observed  | expected | eff. | expected | eff. | expected | eff. | expected | eff. |
| initial                                                                                          |           | 4781.48  |      | 81.19    |      | 25.96    |      | 8.86     |      |
| trigger                                                                                          | 35931856  | 2037.58  | 0.43 | 37.05    | 0.46 | 11.36    | 0.44 | 3.54     | 0.40 |
| event-quality                                                                                    | 34055804  | 2037.58  | 0.43 | 37.05    | 0.46 | 11.36    | 0.44 | 3.54     | 0.40 |
| $N_{ m trk}^{ m PV}>1$                                                                           | 34048524  | 2037.58  | 0.43 | 37.05    | 0.46 | 11.36    | 0.44 | 3.54     | 0.40 |
| $p_{\rm T} > 50 { m ~GeV}$                                                                       | 10185277  | 1404.41  | 0.29 | 26.51    | 0.33 | 8.01     | 0.31 | 2.60     | 0.29 |
| $0  TeV$                                                                                         | 10165453  | 1404.05  | 0.29 | 26.28    | 0.32 | 7.89     | 0.30 | 2.55     | 0.29 |
| $\Delta R_{ m jet, p_T > 50~GeV} > 0.3$                                                          | 1218562   | 1049.18  | 0.22 | 20.93    | 0.26 | 6.42     | 0.25 | 2.02     | 0.23 |
| $\Delta R_{\mathrm{track},p_{\mathrm{T}}>10 \mathrm{GeV}} > 0.$                                  | 2  938051 | 1049.18  | 0.22 | 20.93    | 0.26 | 6.42     | 0.25 | 2.02     | 0.23 |
| $N_{\rm hits}^{\rm silicon} >= 7$                                                                | 905670    | 1049.18  | 0.22 | 20.93    | 0.26 | 6.42     | 0.25 | 2.01     | 0.23 |
| $ d_0  < 2.0 \mathrm{mm}$                                                                        | 787592    | 1047.96  | 0.22 | 20.90    | 0.26 | 6.42     | 0.25 | 1.99     | 0.22 |
| $ z_0^{\rm PV}\sin(\theta)  < 0.5 \text{ mm}$                                                    | 720747    | 1044.40  | 0.22 | 20.90    | 0.26 | 6.42     | 0.25 | 1.98     | 0.22 |
| $ \eta  < 1.65$                                                                                  | 532568    | 884.31   | 0.18 | 18.08    | 0.22 | 5.62     | 0.22 | 1.77     | 0.20 |
| cosmic-muons veto                                                                                | 532521    | 884.31   | 0.18 | 18.08    | 0.22 | 5.62     | 0.22 | 1.77     | 0.20 |
| Z veto                                                                                           | 485366    | 868.18   | 0.18 | 17.64    | 0.22 | 5.38     | 0.21 | 1.67     | 0.19 |
| $N_{	ext{pixel}}^{	ext{shared+split hits}} = 0$<br>$N_{	ext{d}E/	ext{d}x}^{	ext{used hits}} > 1$ | 472548    | 868.00   | 0.18 | 17.55    | 0.22 | 5.36     | 0.21 | 1.65     | 0.19 |
| $N_{{ m d}E/{ m d}x}^{ m used\ hits}>1$                                                          | 445853    | 779.90   | 0.16 | 15.76    | 0.19 | 4.59     | 0.18 | 1.43     | 0.16 |
| $0.0 < \mathrm{d}E/\mathrm{d}x < 20.0$                                                           | 445853    | 779.90   | 0.16 | 15.76    | 0.19 | 4.59     | 0.18 | 1.43     | 0.16 |
| $0.204 < \beta\gamma < 10.0$                                                                     | 304271    | 769.00   | 0.16 | 15.47    | 0.19 | 4.50     | 0.17 | 1.39     | 0.16 |
| $0.2 < \beta_{ m calo} < 2.0$                                                                    | 271827    | 672.10   | 0.14 | 13.40    | 0.17 | 4.05     | 0.16 | 1.13     | 0.13 |
| $\sigma_{\beta} < 0.12$                                                                          | 226107    | 667.84   | 0.14 | 13.40    | 0.17 | 4.05     | 0.16 | 1.13     | 0.13 |

# Systematics on signal

#### stable search

| Source                                       | Relative uncertainty [±%] |
|----------------------------------------------|---------------------------|
| Theoretical uncertainty on signal            | 14–57                     |
| Uncertainty on signal efficiency             | 20–16                     |
| <sup>L</sup> Trigger efficiency              | 2                         |
| <sup>L</sup> QCD uncertainty (ISR, FSR)      | 14                        |
| <sup>L</sup> Pile-up                         | 7–1                       |
| <sup>L</sup> Pixel $\beta\gamma$ measurement | 1–3                       |
| <sup>L</sup> Calorimeter $\beta$ measurement | 10–2                      |
| Luminosity                                   | 5                         |
| Uncertainties on background estimate         | 30–43                     |

### meta-stable search

| Source of uncertainty                                             | -[%] | +[%] |
|-------------------------------------------------------------------|------|------|
| ISR modeling ( <i>R</i> -hadron stable)                           | 14   | 14   |
| ISR modeling ( <i>R</i> -hadron metastable)                       | 1.5  | 1.5  |
| Trigger turn-on                                                   | 0.9  | 0.9  |
| $E_{\rm T}^{\rm miss}$ scale                                      | 1.1  | 2.2  |
| Pileup                                                            | 1.1  | 1.1  |
| Ionization parameterization                                       | 7.1  | 0    |
| Momentum parameterization                                         | 0.3  | 0.3  |
| $\mu$ identification (metastable only)                            | 3.2  | 3.2  |
| Total systematic uncertainty<br>in acceptance $\times$ efficiency |      |      |
| Stable <i>R</i> -hadron                                           | 16   | 14   |
| Metastable <i>R</i> -hadron                                       | 9    | 5    |
| Luminosity                                                        | 5    | 5    |
| Signal cross section                                              | 28   | 28   |