USING ACCELERATORS TO STUDY NEUTRINOS

MAYLY SANCHEZ IOWA STATE UNIVERSITY

ICHEP 2016 - Chicago - August 8, 2016

STUDYING NEUTRINO OSCILLATIONS What do we know?

$$P(v_{\alpha} \rightarrow v_{\beta}) = \left| \sum_{j} U_{\beta j}^{*} e^{-i \frac{m_{j}^{2}L}{2E}} U_{\alpha j} \right|^{2}$$

Where the mixing matrix has 3 mixing angles and one phase (ignoring Majorana):

$\mathbf{U} = \left(\begin{array}{ccc} 1 & 0 & 0\\ 0 & \cos \theta_{23} & \sin \theta_{23}\\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{array}\right)$	$\begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & 0 & \cos \theta_{13} \end{pmatrix}$	$\left(\begin{array}{ccc}\cos\theta_{12} & \sin\theta_{12} & 0\\ -\sin\theta_{12} & \cos\theta_{12} & 0\\ 0 & 0 & 1\end{array}\right)$
Atmospheric +	Reactor +	Solar +
Accelerator	Accelerator	Reactor
L/E 500 km/GeV	L/E 500 km/GeV	L/E 15,000 km/GeV
$\checkmark \Delta m_{32} \sim 2.5 \times 10^{-3} e$	eV^2 $\checkmark \theta_{12} \sim 9^\circ$	✓ δm_{21} ~8 x 10 ⁻⁵ eV ²
\checkmark $\theta_{23} \sim 45^{\circ}$	$\star \delta_{CP} = ?$	\checkmark $\theta_{12} \sim 34^{\circ}$
Ac in the quark case, the	CP nhasa can ba nan zara	if all 3 angles are non zore

As in the quark case, the CP phase can be non-zero if all 3 angles are non-zero. Mayly Sanchez - ISU <u>2</u>

STUDYING NEUTRINO OSCILLATIONS What do we know?

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \left| \sum_{j} U_{\beta j}^{*} e^{-i \frac{m_{j}^{2} L}{2E}} U_{\alpha j} \right|^{2}$$

Where the mixing matrix has 3 mixing angles and one phase (ignoring Majorana):

As in the quark case, the CP phase can be non-zero if all 3 angles are non-zero. Mayly Sanchez - ISU 3

HOW WELL DO WE KNOW IT?

including accelerator-based experiments.

A. Marrone (Neutrino 2016) Mayly Sanchez - ISU

NEUTRINOS MASSES AND MIXING What we do not know in 3-flavor neutrino mixing?

CP violation in the lepton sector has NOT been measured.

- May explain matter-antimatter asymmetry through leptogenesis.
- Measuring δ_{CP} precisely is needed to understand structure of PMNS matrix and underlying symmetries.
- Mass hierarchy or ordering is NOT known for atmospheric neutrinos.
 - Important to be able to understand reach of experiments that study if neutrinos are Majorana or Dirac particles.

The octant of the large mixing angle is NOT known!

- In the case non-maximal mixing this uncertainty impacts our knowledge of mass hierarchy and CP violation.
- Precision measurements of θ_{23} are important for testing PMNS unitarity and for model building.

THE NEUTRINO ACCELERATOR EXPERIMENTAL PROGRAM SEEKS TO ANSWER THESE!

USING ACCELERATORS FOR NEUTRINOS

- Neutrino oscillation experiments have been built using neutrino beams produced by accelerators around the World: US (NuMI and Booster), Europe (CNGS) and Japan (JPARC).
- The baseline of these experiments go from few hundreds of meters (short-baseline) to hundreds (300-1300) of km (long-baseline).

USING ACCELERATORS FOR NEUTRINOS

15 m

Mayly Sanchez - ISU

- Protons from an accelerator impinge on a target, producing pions and kaons to be focused by horn system. The mesons then decay into mostly muon neutrinos.
- On axis spectrum is broad with higher energy neutrinos arising from very forward mesons.
- Off-axis meson decay kinematics select a narrow band spectrum with energy peak depending on the angle at which the detector(s) is (are) located.

30 m 675 m

2 m

7

LONG-BASELINE EXPERIMENTS

- The neutrino spectrum is measured at the ND (before oscillations), this is a combination of neutrino flux, cross section and efficiency.
- The measured spectrum is used to make a prediction of the expectation at the FD before considering oscillations.
- In the case of functionally similar detectors the flux combined with the cross sections uncertainties largely cancel.

UNDERSTANDING THE FLUX, CROSS SECTIONS AND DETECTOR EFFICIENCIES IS ESSENTIAL FOR HIGH PRECISION

UNDERSTANDING FLUX AND NEUTRINO INTERACTIONS

- Significant efforts by all longbaseline experiments on a program of understanding the flux and the cross sections.
- The MINERvA experiment is designed to study neutrino interactions. They have produced a wide variety of results on this topic.
- T2K has also pursued this topic aggressively significantly reducing their systematic uncertainties.
- High statistic samples continues to provide evidence for the need for better modeling/data.

NEW RESULTS ON MUON NEUTRINO DISAPPEARANCE

MUON NEUTRINO DISAPPEARANCE

 In long-baseline experiments, neutrino oscillations deplete rate and distort the energy spectrum.

Mayly Sanchez - ISU

11

NOVA: AN OFF-AXIS NEUTRINO EXPERIMENT IN THE NUMI BEAM

 NOvA is on a high intensity off-axis beam (14 mrad) with a 14 kiloton scintillator-filled calorimeter in a 810 km baseline. Running for 2 years.

- Expect 473 events before oscillations.
- Observe 78 events (expect 82 at best fit oscillated prediction).

NOVA MUON NEUTRINO DISAPPEARANCE RESULTS

• A 3-flavor fit to the v_{μ} selected spectrum provides the allowed parameter space.

MAXIMAL MIXING EXCLUDED AT 2.5 σ

T2K: AN OFF-AXIS NEUTRINO EXPERIMENT IN THE JPARC BEAM

 T2K uses an off-axis beam (2.5°) with large water Cherenkov detector of SuperK in a 295 km baseline.

T2K MUON NEUTRINO AND ANTINEUTRINO DISAPPEARANCE RESULTS

- T2K results are consistent with maximal mixing for both neutrinos and antineutrinos.
 - No hint of CPT violation within

The University of Manchester

MINOS: AN ON-AXIS EXPERIMENT ON THE NUMI BEAM

- MINOS/MINOS+ (2005-2016) collected neutrino beam data using an 5.4-kton iron-calorimeter detector in a 735 km baseline.
 - Using muon neutrino disappearance as well as electron neutrino appearance data and atmospheric neutrinos, they observe a slight octant preference.
- Small amount of tension between T2K's maximal and NOvA's nonmaximal result. More data should resolve this.

J. Evans - Neutrino 2016

OPERA: AN ON-AXIS TAU APPEARANCE EXPERIMENT ON THE CERN BEAM

- Most muon neutrinos oscillate to tau neutrinos. However there is a 3.4 GeV threshold to produce a T that must be met by the neutrino beam energy.
- With a baseline from CERN to Gran Sasso of 730 km and a higher energy beam, OPERA uses the high resolution of emulsion to find Ts.
- In OPERA 5 candidates have been observed.
- Claim discovery of v_τ appearance at 5.1 σ.
 (Phys. Rev. Lett. 115 (2015) 121802)

D. Duchesneau - ICHEP 2016

NEW RESULTS ON ELECTRON NEUTRINO APPEARANCE

ELECTRON NEUTRINO APPEARANCE

- Searching for v_e appearance in a v_{μ} beam, we can access sin (20₁₃).
- Probability depends not only on θ_{13} but also on δ_{CP} which enhances or suppresses it.
- Probability is enhanced or suppressed due to matter effects which depend on the mass hierarchy as well as neutrino vs anti-neutrino running.
- In addition, the probability depends on the octant of θ_{23} .

PROBE THE MASS HIERARCHY, CP VIOLATION AND OCTANT SPACE

T2K ELECTRON NEUTRINO APPEARANCE RESULTS

- T2K has observed 32 neutrinos and 4 antineutrinos.
- There are 29 and 6 expected at NH, $\delta_{CP} = -\pi/2$ (or $3\pi/2$) which is the largest asymmetry.

Ratio

2K Run1–7c preliminary

600

800

More v_e can predicted ar candidates t

T2K ELECTRON NEUTRINO APPEARANCE RESULTS

- Results consistent with the amount of appearance expected from information in reactors.
- Combining with reactor and T2K's own muon neutrino disappearance data.
- Claim a 90% exclusion of $\delta cp = 0$ and π .
 - Exclusion depends on T2K's observed maximal mixing angle.

Mayly Sanchez - ISU

NOVA ELECTRON NEUTRINO APPEARANCE RESULTS

- Observe 33 events for 8.2 expected background events.
- Range of expectation (for maximal mixing): NH, $3\pi/2$, IH, $\pi/2$, 36 19

Electron neutrino appearance observed at > 8 σ .

NOVA ELECTRON NEUTRINO APPEARANCE RESULTS

- Fitting the electron neutrino appearance spectrum with muon neutrino disappearance data which for NOvA hints at a non maximal mixing angle.
- Both octants and hierarchies are allowed at 1*σ*.
 - Very small χ^2 difference between IH and NH and both octants.

NOvA sees a 3σ exclusion at IH, lower octant around $\delta_{CP}=\pi/2$.

THE NEXT GENERATION EXPERIMENTS

BEYOND 3 NEUTRINOS

- Evidence for additional neutrinos, that do not interact via the weak current, comes from accelerator short-baseline experiments: LSND (decay at rest) and MiniBooNE (decay in flight). No evidence from long-baseline experiments.
- A short-baseline program (SBN) has begun construction at Fermilab using the booster beam. A 3-detector system (all liquid argonbased) will explore the anomalous hints with coverage of the LSND allowed oscillation parameters in neutrinos at $>5\sigma$.
- In Japan, JSNS² will seek to use a decay at rest beam to reproduce LSND results directly. Expecting exclusion at 3σ of the allowed LSND region.

Mayly Sanchez - ISU

D. Schmitz - Neutrino 2016

T. Maruyama - ICHEP 2016

NEXT GENERATION

- Higher intensity beams can provide more neutrinos a allow for a longer baseline.
- Similarly larger mass can allow to collect more neutrinos.
- Finally higher detector resolution can allow for better background rejection.

- In the US a new experiment (DUNE) is being planned with a baseline of 1300km, a new beam to reach 2.3 MW and high resolution liquid argon detectors.
- In Japan, an upgrade to the beam to 1.3 MW and a new 500 kton scale detector system is also being planned as part of the T2HK program.

an ord Ind rgr und EUTURE: Research Fermilab DUNE IN THE US

Construction **Begins**

2018: protoDUNEs at CERN 2021: Far Detector Installation **Begins**

2024: Physics Data Begins (20 kt)

2026: Neutrino **Beam Available**

- The US program plans to build:
 - 40 kton liquid argon underground detector in four 10-kton (fiducial) modules. Far Site construction begins next year.
 - A wide-band beam from Fermilab (1300km baseline) at 2.3 MW by 2026.
- The mass hierarchy can be determined above 5σ for all values of δ_{CP} .

CPV at 5σ (δ CP = $-\pi/2$ or $3\pi/2$) where the uncertainty in the v_e appearance sample normalization has an impact on reach.

400

600

800 1000 1200

Exposure (kt-MW-years) 27

1400

THE FUTURE: T2HK IN JAPAN

- Current T2K program expects 7.8 x 10²¹
 Protons on Target (POT) by 2020.
 - Potential extension (T2K-II) would have 20 x 10²¹ POT by 2026.
 - ~3 σ sensitivity to $\boldsymbol{\delta}_{\text{CP}}$.
- Requires accelerator and beam-line upgrades to reach 1.3 MW. Currently at 420 kW.
- While T2K-II is running, construction of the next generation detector (Hyper-Kamiokande) begins:
 - By 2026 build 2 large Water Cherenkov of 260 kton each.
 - >5 σ sensitivity to $\boldsymbol{\delta}_{\text{CP}}$.

Mayly Sanchez - ISU

-50

-100

50

sin² θ_{2} ,

100

150

δ_{CP} [degree]

-150

SUMMARY

- Many new results have been released from the accelerator experiments this summer:
 - NOvA observes hints of non maximal mixing.
 - T2K does not find evidence of CPT.
 - T2K excludes CP conservation at 90%.
 - NOvA excludes a CP region of inverted hierarchy for the lower octant.
- The next generation of long-baseline experiments with more mass, more baseline and more detector resolution is being planned.
- Better precision will allow us to test the 3-flavor neutrino oscillation framework.
- Outside of the 3-flavor framework, tests in long-baseline accelerator experiments find no evidence so far for sterile neutrinos beyond LSND and MiniBooNE. A new program using short baseline and decay at rest techniques to study these neutrinos is in progress.

Stay tuned for more data!

BACKUP

BEYOND 3 NEUTRINOS

• Some evidence for additional neutrinos, that do not interact via the weak current comes from accelerator experiments: LSND (decay at rest) and MiniBooNE (decay in flight).

31

sin²20

sin²20

LOOKING FOR Steriles today

- Sterile neutrinos can be searched for using short as well as long-baseline exp
 MANCHESTER 1824
- In long-baseline the observation of neutral current below expectation and energy distortions of the 3-flavor oscillations would be tell tale signs. MINOS and NOvA have done these measurements.
- Other results from nonaccelerators: reactors, atmospherics can be combined with these results.
- J. Evans Neutrino 2016 Mayly Sanchez - ISU

FUTURE STERILE SEARCHES

- A short-baseline program (SBN) has begun construction at Fermilab using the booster beam.
- A 3-detector system (SBND, MicroBooNE and ICARUS - all liquid argon-based) will explore the anomalous hints of new physics in the neutrino sector with coverage of the LSND allowed oscillation parameters in neutrinos at $>5\sigma$.
- In Japan, JSNS² will seek to use a decay at rest beam to reproduce LSND results directly. Expecting exclusion at 3σ of the allowed LSND region.

Mayly Sanchez - ISU

D. Schmitz - Neutrino 2016

T. Maruyama - ICHEP 2016

IMPROVING OUR UNDERSTANDING OF THE BEAM

- While most of the uncertainties cancel for functionally identical Near/Far detectors, experiments must be able to measure cross sections and this requires knowledge of the flux.
 - A new method to constraint the NUMI flux to 5.4% overall errors and ~7% at the peak for numi (arXiv:1607.00704)
- For non-identical detector like T2K a program that disentangles beam flux and cross sections is even more essential.
 - T2K has been able to reduce errors from 12-15% to 5-8%.
- Next generation needs few % uncertainties.
 Mayly Sanchez ISU

 $E_{\text{avail}} = \sum$ (Proton and π^{\pm} KE) + (Total *E* of other particles except neutrons)

IMPROVING OUR UNDERSTANDING OF NEUTRINO INTERACTIONS

- The MINERvA experiment runs on the NUMI beam studying neutrino interactions.
- High statistic samples puts in evidence the need for better modeling/data.
- MINERvA has found disagreement in muon neutrino charged selected events as a function of momentum transfer.
 - NOvA has observed a similar effect.
- A part of this observed disagreement is explained by the absence of meson exchange currents or 2p2h processes in the simulation.

 $E_{\text{avail}} = \sum$ (Proton and π^{\pm} KE) + (Total *E* of other particles except neutrons)

IMPROVING OUR UNDERSTANDING OF NEUTRINO INTERACTIONS

- The MINERvA experiment runs on the NUMI beam studying neutrino interactions.
- High statistic samples puts in evidence the need for better modeling/data.
- MINERvA has found disagreement in muon neutrino charged selected events as a function of momentum transfer.
 - NOvA has observed a similar effect.
- A part of this observed disagreement is explained by the absence of meson exchange currents or 2p2h processes in the simulation.

IMPROVING THE SIGNAL PREDICTION

- Large statistics for the appearance signal implies that we need to keep the systematic uncertainties at the few percent level.
- In long-baseline appearance experiments, signal at FD is v_e (for a v_μ beam), so cross-section uncertainties do not cancel out between ND and FD.
- MINERvA, T2K and NOvA have presented results.
 - MINERvA recently encountered additional background from neutral current diffractive pion production.

T2K MUON NEUTRINO AND ANTINEUTRINO DISAPPEARANCE RESULTS

- T2K results are consistent with maximal mixing for both neutrinos and antineutrinos.
 - No hint of CPT within errors.
 - The best fit for antineutrinos is slightly non-maximal.
- This result agrees with previous MINOS results.
- Small amount of tension between T2K's maximal and NOvA's non-maximal result. More data should resolve this.

	NH	IH
$\sin^2 \theta_{23}$	$0.532^{+0.046}_{-0.068}$	$0.534_{-0.066}^{+0.043}$
$ \Delta m^2_{32} [10^{-3} { m eV}^2]$	$2.545^{+0.081}_{-0.084}$	$2.510\substack{+0.081 \\ -0.083}$

MINOS: AN ON-AXIS EXPERIMENT ON THE NUMI BEAM

- MINOS and MINOS+ combines data from low energy and high energy beam running to fill-in the spectrum observed by the iron-calorimeter.
- Using additional atmospheric and electron neutrino appearance ta they observe a slight octant preference.
 - Best fit is in the lower octant (IH).

 $\Delta m_{32}^{2} = \begin{cases} 2.42 \pm 0.09 \times 10^{-3} \, \text{eV}^{2} \, \text{Normal} \\ = 2.48^{\pm 0.09}_{\pm 0.11} \times 10^{-3} \, \text{eV}^{2} \, \text{Inverted} \end{cases}$

 $\sin^{2}(\theta_{23}) = \begin{cases} 0.35 - 0.65 \,(90\% \text{ C.L.}) \text{ Normal} \\ 0.35 - 0.66 \,(90\% \text{ C.L.}) \text{ Inverted} \end{cases}$

ELECTRON NEUTRINO APPEARANCE

• The probability of v_e appearance in a v_{μ} beam:

Normal hierarchy

10

 $\frac{G_f n_e L}{\sqrt{2}\Delta} \approx$ \boldsymbol{E} $A \equiv$ GeV

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \frac{\sin^{2} 2\theta_{1} \sin^{2} \theta_{23}}{(A-1)^{2}} \Delta \equiv \frac{\Delta m_{31}^{2} L}{4E}$$

$$+2\alpha \sin \theta_{13} \cos \phi \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \cos \Delta$$

$$-2\alpha \sin \theta_{13} \sin \phi \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \sin \Delta$$

$$-2\alpha \sin \theta_{13} \sin \phi \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin A\Delta}{A} \frac{\sin(A-1)\Delta}{(A-1)} \sin \Delta$$

$$\frac{\sin^{2} 2\theta_{13} - \theta_{13} -$$

4000

2000

1

0.04

0.02

E, (GeV)

Mayly Sanchez - ISU

1

4000

2000

Appearance Probability

0.04

0.02

E, (GeV)

Normal hierarchy

10

NOVA ELECTRON NEUTRINO APPEARANCE RESULTS

 Range of expectation (for maximal mixing):

NH, 3π/2,	IH, π/2,	
36	19	

- Observe 33 events for 8.2 expected background events.
- Electron neutrino appearance observed at > 8 σ .

T2K ELECTRON NEUTRINO APPEARANCE RESULTS

• T2K has observed 32 neutrinos and 4 antineutrinos.

600

400

0.0

OFF-AXIS BEAM NEUTRINOS: T2K AND NOVA NOvA hierarchy resolution,

 Combining results from T2K and NOvA we have the potential for improved sensitivities.

 The combined sensitivities can achieve
 2.5-3 sigma for some values of the CP phase.

NEUTRINOS MASSES AND MIXING How well are these known?

EXPERIMENTAL PICTURE EVOLVING ONIC KNY F +0.98

 ν_3

GLOBAL ANALYSIS FOR CP VIOLATION A. MARRONE (NEUTRINO 2016)

 Combining all the World's data mass squared differences and the 12 and 13 mixing angles are well defined.

GLOBAL ANALYSIS FOR CP VIOLATION INCLUDES NEW RESULTS A. MARRONE (NEUTRINO 2016)

- Combining all the World's data mass squared differences and the 12 and 13 mixing angles are well defined.
- Delta CP conserving cases are disfavored about 2 sigma and some regions [0, Pi] are disfavored at more than 3 sigma.
- Slight preference for a non maximal 23 angle goes from 1 to 2 sigma.
- Slight preference as well for Normal Hierarchy (less than 2 sigma).

THE RACE TO THE MASS HIERARCHY

- An independent mass hierarchy measurement is required to take the bite off the CP violation measurement (in the wrong half of the phase space).
- Experiments like PINGU (an IceCube upgrade), JUNO (a second generation Daya Bay), INO (an atmospheric neutrino experiment) could provide this measurement.

A NOTE ABOUT THE SENSITIVITY TO THE MASS HIERARCHY

- In the mass hierarchy determination, only two discrete results are considered, as the true mass hierarchy: either normal (NH) or inverted (IH).
- The $T = \Delta \chi^2(\theta)$ test metric we typically use does not follow a χ^2 distribution for mass ordering (i.e. Wilks' theorem not valid)
- Instead, T is approximately gaussian, with mean T_0 and width $2(T_0)^{\frac{1}{2}}$, where T_0 is the value for the data set without statistical fluctuations
- Need to check gaussianity using MC for each experiment. Quote median sensitivity instead of $(T_0)^{\frac{1}{2}}$.

T_0	std. sens.		median sens.	
9	99.73%	(3.0σ)	99.87%	(3.2σ)
16	99.9937%	(4.0σ)	99.9968%	(4.2σ)
25	99.999943%	(5.0σ)	99.999971%	(5.1σ)

From arxiv:1311.14822