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A Realistic, Reasonable, and Simple Paradigm:

Ve Uel UeQ UeS 14!
Vr U’Tl Ue7'2 UTS V3

Definition of neutrino mass eigenstates (who are vy, vo, 1/37):

e mi < mj Amis < 0 — Inverted Mass Hierarchy
e m5 —m? < |m3—mj3,| Am?; > 0 — Normal Mass Hierarch
5 1 3 1.2 mis > ormal Mass Hierarchy

20, — |Uea|”. 2. — 1Uusl”. _ —i6

tan 912 — IUel{Q, tan 923 — |Uﬁ3|2’ Ueg = S1n (9136 '

August 8, 2016 v Interpretations




André de Gouvéa Northwestern

Understanding Neutrino Oscillations: Are We There Yet?

AT
R — (M) (m,)? (013 # 0!)
‘ am?),
(my)* b e Is CP-invariance violated in neutrino
oscillations? (§ #£ 0,77)
A m v, e Is 3 mostly v, or ;7 (023 > 7/4,
(B . 023 < /4, or O23 = w/47)
u (am?),,
v e What is the neutrino mass hierarchy?
\ 2
E (my) = All of the above can “only” be
sol
(m,)? (M,)” e — addressed with new neutrino
normal hierarchy inverted hierarchy oscillation experiments
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The Three-Flavor Paradigm Fits All" Data Really Well

[*modulo short-baseline anomalies, later]

Bounds on single oscillation Parame&ers

(preliminary update)
[A. Marrone, Talk at Neutrino 2016]
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LBL Acc + Solar + KL
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(SK+DeepCore)
LBL Acc + Solar + KL + SBL Reactors + Atmos
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Results in the (3,013) plane corroborated by atmospheric data
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Understanding Neutrino Oscillations: Are We There Yet? [NO !]

AT
R — (M) (m,)? (013 # 0!)
‘ am?),
(my)* b e Is CP-invariance violated in neutrino
oscillations? (§ #£ 0,77) [‘yes’ hint]
) v e Is v3 mostly v, or ;7 [f23 # 7/4 hint]
(AM) 4
= v, (Amz)atm
v e What is the neutrino mass hierarchy?
' (Am3i; > 0?)  [NH weak hint]
\ 2
E (my) = All of the above can “only” be
sol
(m,)? (M,)” e — addressed with new neutrino
normal hierarchy inverted hierarchy oscillation experiments

Ultimate Goal: Not Measure Parameters but Test the Formalism (Over-Constrain Parameter Space)
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What we ultimately want to achieve:
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Ve Uei Uex Ues V1
Vr U’rl U7'2 U’7'3 V3

What we have really measured (very roughly):
e T'wo mass-squared differences, at several percent level — many probes;
o |Ueca|? — solar data;
o |U,2|? + |Ur2|* — solar data;
o |Uc2|?|Uc1]? — KamLAND;
o |U,s|?(1 —|Uus|?) — atmospheric data, K2K, MINOS;
o |Uecs|?(1 — |Ues|?) — Double Chooz, Daya Bay, RENO:;

o |Uess|?|U,3|? (upper bound — evidence) — MINOS, T2K.

We still have a ways to go!
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New Phenomena? What Could We Run Into?

e New neutrino states. In this case, the 3 X 3 mixing matrix would not
be unitary.

e New short-range neutrino interactions. These lead to, for example,

new matter effects.

e New, unexpected neutrino properties. Do they have nonzero magnetic
moments? Do they decay?” The answer is ‘yes’ to both, but nature
might deviate dramatically from vSM expectations.

e Weird stuff. CPT-violation. Decoherence effects (aka “violations of
Quantum Mechanics.”)

e ctc.
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Aside: The Short Baseline Anomalies

Different data sets, sensitive to L/FE values small enough that the known
oscillation frequencies do not have “time” to operate, point to unexpected
neutrino behavior. These include

e 1, — U, appearance — LSND, MiniBooNE;
® U, — Usher disappearance — radioactive sources;

® U, — Uyher disappearance — reactor experiments.

None are entirely convincing, either individually or combined. However,

there may be something interesting going on here.
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What is (Going on Here?

e Are these “anomalies” related?

e Is this neutrino oscillations, other new physics, or something else?

e Are these related to the origin of neutrino masses and lepton mixing?
e How do clear this up definitively?”

Need new clever experiments, of the short-baseline type (and we are

working on it)!

Observable wish list: [Community working on almost all of these]
e v, disappearance (and antineutrino);
e v, disappearance (and antineutrino);
® U, < U, appearance;

® U, . — Uy appearance.
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If the oscillation interpretation of the short-baseline anomalies turns out
to be correct ...

e We would have found new particle(s)!!!!!!  (cannot overemphasize this!]

e Lots of Questions! What is it? Who ordered that? Is it related to the
origin of neutrino masses? Is it related to dark matter?

e Lots of Work to do! Discovery, beyond reasonable doubt, will be
followed by a panacea of new oscillation experiments. If, for example,
there were one extra neutrino state the 4 x 4 mixing matrix would
require three more mixing angles and three more CP-odd phases.
Incredibly challenging. For example, some of the new CP-odd

parameters can only be “seen” in tau-appearance.

e How is any of this consistent with cosmic surveys, big bang

nucleosynthesis and other probes of the early universe!?
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Neutrino Masses: Only* “Palpable” Evidence
of Physics Beyond the Standard Model

The SM we all learned in school predicts that neutrinos are strictly
massless. Hence, massive neutrinos imply that the the SM is incomplete
and needs to be replaced /modified.

Furthermore, the SM has to be replaced by something qualitatively
different.

* There is only a handful of questions our model for fundamental physics cannot
explain (my personal list. Feel free to complain).

e What is the physics behind electroweak symmetry breaking? (Higgs v').
e What is the dark matter? (not in SM).
e Why is there more matter than antimatter in the Universe? (not in SM).

e Why does the Universe appear to be accelerating? Why does it appear that the
Universe underwent rapid acceleration in the past [inflation]? (not in SM).
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What is the New Standard Model? [vSM]

The short answer is — WE DONT KNOW. Not enough available info!

0

Equivalently, there are several completely different ways of addressing
neutrino masses. The key issue is to understand what else the vSM
candidates can do. |are they falsifiable?, are they “simple”?, do they
address other outstanding problems in physics?, etc]

We need more experimental input.
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Neutrino Masses, EWSB, and a New Mass Scale of Nature

The LHC has revealed that the minimum SM prescription for electroweak
symmetry breaking — the one Higgs double model — is at least approximately

correct. What does that have to do with neutrinos?
The tiny neutrino masses point to three different possibilities.
1. Neutrinos talk to the Higgs boson very, very weakly (Dirac neutrinos);

2. Neutrinos talk to a different Higgs boson — there is a new source of

electroweak symmetry breaking! (Majorana neutrinos);

3. Neutrino masses are small because there is another source of mass out
there — a new energy scale indirectly responsible for the tiny neutrino

masses, a la the seesaw mechanism (Majorana neutrinos).

Searches for OvG3 help tell (1) from (2) and (3), the LHC, charged-lepton flavor

violation, etc may provide more information.
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Fork on the Road: Are Neutrinos Majorana or Dirac Fermions?

Best (Only?) Bet: Neutrinoless Double-Beta Decay.
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v'SM — An Old Idea

SM as an effective field theory — non-renormalizable operators
Lysm D —yij% +0(5z) + He.

There is only one dimension five operator [Weinberg, 1979]. If A > 1 TeV, it
leads to only one observable consequence...
after EWSB Losm D S0 my; = yij%.
e Neutrino masses are small: A > v —m, < my (f =e, u,u,d, etc)
e Neutrinos are Majorana fermions — Lepton number is violated!

e vSM effective theory — not valid for energies above at most A.

e What is A? First naive guess is that A is the Planck scale — does not work.
Data require A ~ 10'* GeV (related to GUT scale?) [note y™a* = 1]

What else is this “good for”? Depends on the ultraviolet completion!
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Example: the (Type I) Seesaw Mechanism

A simple®, renormalizable Lagrangian that allows for neutrino masses is

M, . ..
5 N'N'+ Hee.

3
L, = Lold = At LYHN' =3
i=1
where N; (i = 1,2, 3, for concreteness) are SM gauge singlet fermions. £,
is the most general, renormalizable Lagrangian consistent with the SM
gauge group and particle content, plus the addition of the /N; fields.

After electroweak symmetry breaking, £, describes, besides all other SM

degrees of freedom, six Majorana fermions: six neutrinos.

20nly requires the introduction of three fermionic degrees of freedom, no new inter-

actions or symmetries.
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What We Really Know About M and A:

e M = 0: the six neutrinos “fuse” into three Dirac states. Neutrino mass
matrix given by fai = Aaiv.
The symmetry of £, is enhanced: U(1)p_r is an exact global symmetry of

the Lagrangian if all M; vanish. Small M; values are tHooft natural.

e M > u: the six neutrinos split up into three mostly active, light ones, and
three, mostly sterile, heavy ones. The light neutrino mass matrix is given
by mas = >, taiM; " pps moc 1/A = A= M/p?].
This the seesaw mechanism. Neutrinos are Majorana fermions. Lepton
number is not a good symmetry of £, , even though L-violating effects are
hard to come by.

o M ~ u: six states have similar masses. Active—sterile mixing is very large.

This scenario is (generically) ruled out by active neutrino data
(atmospheric, solar, KamLAND, K2K, etc).

e M < u: neutrinos are quasi-Dirac fermions. Active—sterile mixing is

maximal, but new oscillation lengths are very long.
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Accommodating Small Neutrino Masses

If u = Xv < M, below the mass scale M,

 LHLH
===

Neutrino masses are small if A > (H). Data require A ~ 10'* GeV.

Ls

In the case of the seesaw,

AN?’

so neutrino masses are small if either

e they are generated by physics at a very high energy scale M > v

(high-energy seesaw); or

e they arise out of a very weak coupling between the SM and a new, hidden

sector (low-energy seesaw); or

e cancellations among different contributions render neutrino masses

accidentally small (fine-tuning or symmetry).
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Constraining the Seesaw Lagrangian
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[AdG, Huang, Jenkins, arXiv:0906.1611]
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Piecing the Neutrino Mass Puzzle

Understanding the origin of neutrino masses and exploring the new physics in the

lepton sector will require unique theoretical and experimental efforts, including ...
e understanding the fate of lepton-number. Neutrinoless double beta decay!

e a comprehensive long baseline neutrino program, towards precision oscillation

physics.
e other probes of neutrino properties, including neutrino scattering.

e precision studies of charged-lepton properties (g — 2, edm), and searches for rare

processes (u — e-conversion the best bet at the moment).

e collider experiments. The LHC and beyond may end up revealing the new physics

behind small neutrino masses.

e cosmic surveys. Neutrino properties affect, in a significant way, the history of the
universe. Will we learn about neutrinos from cosmology, or about cosmology from

neutrinos?

e searches for baryon-number violating processes.
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Understanding Fermion Mixing
One of the puzzling phenomena uncovered by the neutrino data is the
fact that Neutrino Mixing is Strange. What does this mean?

It means that lepton mixing is very different from quark mixing:

0.80.5 0.2 1 02w
Vuns ~ 04 06 07 Verkm ~ | 0.2 1 0.01
0.40.60.7 o 001 1

(VM NS)e3l < 0.2]

WHY?

They certainly look VERY different, but which one would you label

as “strange”?
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10 anarchical mixing matrices, plus the “real” one

Ue1|?  |Ue2|?  |Ues|? 0.69 0.29 0.02 0.36 0.35 0.29
|Uu3‘2 — .o+ 0.40 : ..« 0.68 ,

‘UT3|2 ..~ 0.58 .- 0.03

0.83 0.11 0.06 0.71 0.13 0.16 0.24 0.47 0.29
0.87 , v 0.20 , ..« 0.58 ,

0.07 .-« 0.64 ..« 0.13

0.16 0.35 0.49 0.63 0.24 0.13 0.12 0.35 0.53
0.13 , cee 073 , e 012 ,

0.38 ..+ 0.14 .-« 0.35

0.22 0.55 0.23 0.21 0.37 0.42 0.54 0.44 0.02

0.12 ) -+ 0.08 ; -+ 0.54

0.65 ..o 0.50 .. 0.44
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Anarchy vs. Order —  more precision required!
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Ol"del“: Sin2 913 = CC082 29237 C c [08, 12] [AdG, Murayama, 1204.1249]
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Summary

The venerable Standard Model sprung a leak in the end of the last

century: neutrinos are not massless! [and we are still trying to patch it. .. ]

1.

We still know very little about the new physics uncovered by neutrino
oscillations. In particular, the new physics (broadly defined) can live almost

anywhere between sub-eV scales and the GUT scale.

Neutrino masses are very small — we don’t know why, but we think it

means something important.

Neutrino mixing is “weird” — we don’t know why, but we think it

means something important.
What is going on with the short-baseline anomalies?

There is plenty of room for surprises, as neutrinos are very deep probes
of all sorts of physical phenomena. Neutrino oscillations are “quantum
interference devices,” potentially sensitive to whatever else might be out

there (keep in mind, neutrino masses might be physics at A ~ 10'* GeV).

August 8, 2016 v Interpretations




André de Gouvéa




André de Gouvéa Northwestern

Oscillations + OvBB + Cosmo “sktrong” (x)

1 - I T T T 71T l I T I T T T I: 1 - I T T T 71T l T I I T T T l:
E 2 E E [A. Marrone, Talk at Neuirino 2016]
- Ro (NO) o (10) . Ro |- .
B 3¢ e 30 . 30 .
107 = E 107 = E
= g e .
L § 1 = [ ]
O T < 18 | !
N I A
L = Y= E
10—3 | | | | | | I | 104 | | | | | | | I |
1 1
Y (eV) Y (eV)
Normal ordering and inverted Absolute minimum n NO,
ordering separate minima Ay*(I0-NQ) = 4.6

Inverted ordering case “under pressure” if one takes all data at face value.
But too em'l-j to draw conclusions. Future oscillation probes —>
i

(*) Ax? taken from “base+BAO+HO73F02” scenario in arXiv:1605,04 320v1
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“Higher Order” Neutrino Masses from AL = 2 Physics

Imagine that there is new physics that breaks lepton number by 2 units at
some energy scale A, but that it does not, in general, lead to neutrino

masses at the tree level.

We know that neutrinos will get a mass at some order in perturbation

theory — which order is model dependent!

For example:
e SUSY with trilinear R-parity violation — neutrino masses at one-loop;
e Zee models — neutrino masses at one-loop;
e Babu and Ma — neutrino masses at two loops;
e Chen et al, 0706.1964 — neutrino masses at two loops;
e Angel et al, 1308.0463 — neutrino masses at two loops;

e ctc.
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[arXiv:0708.1344 [hep-ph]]

e dc
ﬁl Order-One Coupled, Weak Scale Physics
|
@ : ! Can Also Explain Naturally Small
! '3
- ;_ o _ : Majorana Neutrino Masses:
¢1 by

|
|
|
L ! Multi-loop neutrino masses from lepton number
|
|

02
|
H /\\ violating new physics.
de %

d

—Lo,sM D S Mibidi +iy1QLb1 + y2ddCpa + y3ed oz + A1ad1pa HH + Naza M badsda + h.c.
my o (y1y2y3X234)A14/(16m)* — neutrino masses at 4 loops, requires M; ~ 100 GeV!

WARNING: For illustrative purposes only. Scenario almost certainly ruled out by
searches for charged-lepton flavor-violation and high-energy collider data.
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Dirac Neutrinos — Enhanced Symmetry!(Symmetries?)

Back to

M, . ..
5 N'N'+ Hee.

3
L, =Loa — AaiLl*HN" =
1=1

where N; (¢ = 1, 2,3, for concreteness) are SM gauge singlet fermions.
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Dirac Neutrinos — Enhanced Symmetry!(Symmetries?)

If all M; = 0, the neutrinos are Dirac fermions.

L, =Loq — )\aiLaHNi + H.c.,

where N; (i = 1, 2,3, for concreteness) are SM gauge singlet fermions. In
this case, the vSM global symmetry structure is enhanced. For example,

U(1)p_y is an exactly conserved, global symmetry. This is new!

Downside: The neutrino Yukawa couplings A are tiny, less than 1012,
What is wrong with that? We don’t like tiny numbers, but Nature seems
to not care very much about what we like. ..

More to the point, the failure here is that it turns out that the neutrino
masses are not, trivially, qualitatively different. This seems to be a
“missed opportunity.”
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There are lots of ideas that lead to very small Dirac neutrino masses.

Maybe right-handed neutrinos exist, but neutrino Yukawa couplings are
forbidden — hence neutrino masses are tiny.

One possibility is that the N fields are charged under some new symmetry
(gauged or global) that is spontaneously broken.

Rai
A

where ® (spontaneously) breaks the new symmetry at some energy scale

Ai LXHN" — = (L*H)(N'®),

ve. Hence, \ = rvg /A. How do we test this?

E.g., AdG and D. Hernandez, arXiv:1507.00916

Gauged chiral new symmetry for the right-handed neutrinos, no Majorana
masses allowed, plus a heavy messenger sector. Predictions: new stable massive
states (mass around vg) which look like (i) dark matter, (ii) (Dirac) sterile

neutrinos are required. Furthermore, there is a new heavy Z’-like gauge boson.

= Natural Conections to Dark Matter, Sterile Neutrinos, Dark Photons!
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