Exotic Summary

Shih-Chieh Hsu
University of Washington
Aug 9 2016
• Many Big Questions beyond the SM to be answered at TeV scale
• Big Ideas highly constrained from theory and observed phenomena

Wolfgang Adam's talk

Florenzia Canelli's talk

Scope of this talk
• Quite often the same big idea probed by different signatures
 • It’s crucial to search all complementary signatures

Plan of this talk

1. Dark Matter
 - Minimal Dark Matter

2. Resonance
 - Top Partner
 - W/Z'

3. Unconventional Signatures
 - SUSY
 - Extended Higgs Sector
 - Compositeness, Extra dimensions

Search Signatures for Big Ideas
A large number of contributions to this talk:
- 6 parallel sessions, 22 talks and 16 posters
- 2 submitted papers, 45 new conf. notes
- Selected (2016 or First) results as examples to illustrate key points
- More results are linked below and in the backup slides

Exotic Contributions at a Glance

ICHEP Preliminary

<table>
<thead>
<tr>
<th>Parallel Talk</th>
<th>Speakers</th>
<th>Parallel Talk</th>
<th>Speakers</th>
<th>Poster</th>
<th>Speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM in CMS</td>
<td>Shia-Shan Yu</td>
<td>3rd generation t,tt,tb ATLAS</td>
<td>Danilo Lima</td>
<td>DM in 4top ATLAS</td>
<td>Leonid Serkin</td>
</tr>
<tr>
<td>DM in ATLAS</td>
<td>Steven Schramm</td>
<td>3rd generation Quark CMS</td>
<td>Michael Anthony Buttignol</td>
<td>H+MET ATLAS</td>
<td>Andrew Hard</td>
</tr>
<tr>
<td>dijet/multijet ATLAS/CMS</td>
<td>Saptaparna Bhattacharya</td>
<td>vector-like quark CMS</td>
<td>Julie Hogan</td>
<td>ZH CMS</td>
<td>Cesar Bernardes</td>
</tr>
<tr>
<td>dilepton ATLAS</td>
<td>Heberth Jesus Torres Davila</td>
<td>VLQ ATLAS</td>
<td>Georges Azuelos</td>
<td>HH4b CMS</td>
<td>Angelo De Souza Santos</td>
</tr>
<tr>
<td>heavy/LFV dilepton CMS</td>
<td>Hwi Dong Yoo</td>
<td>leptonquark & compositeness CMS</td>
<td>Seth Cooper</td>
<td>HH4b ATLAS</td>
<td>John Alison</td>
</tr>
<tr>
<td>multilepton ATLAS/CMS</td>
<td>Christos Leonidopoulos</td>
<td>leptonquark/excited quark ATLAS</td>
<td>Simon Viol</td>
<td>Vector-like Top CMS</td>
<td>Anthony Barker</td>
</tr>
<tr>
<td>WW/WZ/ZZ ATLAS</td>
<td>Nikolaos Konstantinidis</td>
<td>Long-lived CMS</td>
<td>Jamie Antonelli</td>
<td>photon+jet resonance CMS</td>
<td>Varun Sharma</td>
</tr>
<tr>
<td>Heavy Wh/Zh CMS</td>
<td>Salvatore Rappoccio</td>
<td>displaced hadronic/lepton jet</td>
<td>Edward Moyse</td>
<td>dijet Trigger level ATLAS</td>
<td>Karol Krizka</td>
</tr>
<tr>
<td>Heavy Higgs ATLAS</td>
<td>Karsten Koeneke</td>
<td>Long-lived SUSY ATLAS</td>
<td>Lauren Jeanty</td>
<td>Exotic/Higgs LHCb</td>
<td>Donatella Lucchesi</td>
</tr>
<tr>
<td>Heavy Neutral Higgs CMS</td>
<td>Benedikt Vormwald</td>
<td>black holes & anomaly charged ATLAS</td>
<td>Christopher Lester</td>
<td>Z(II)gamma resonance CMS</td>
<td>Kyungwook Nam</td>
</tr>
<tr>
<td>heavy diphoton ATLAS</td>
<td>Bruno Lenzi</td>
<td>Exotica with LHCb</td>
<td>Pieter David</td>
<td>tt Resonance CMS</td>
<td>Christine Mc Lean</td>
</tr>
<tr>
<td>heavy diphoton CMS</td>
<td>Bruno Chiara Ilaria Rovelli</td>
<td></td>
<td></td>
<td>stable massive charged ATLAS</td>
<td>Sascha Mehlhase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>long-lived charged ionization ATLAS</td>
<td>Bradley Axen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>long-lived particle at ATLAS</td>
<td>Gordon Watts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>long-lived</td>
<td>Antonio Policicchio</td>
</tr>
</tbody>
</table>
1. Dark Matter
Collider Dark Matter Interpretation

- ATLAS/CMS searches assuming that DM is a WIMP

![Diagram showing DM coupling to SM](image)

- DM interpretation using simplified model to avoid EFT validity concerns

![Diagram showing simplified model](image)

Run1

- Direct detection (WIMP-nucleon scattering)
- Indirect detection (WIMP annihilation)

Run2

- Collider searches (WIMP pair production)

Direct mediator searches contributing to DM interpretations

Steven Schramm (Université de Genève)

Searches for Dark Matter in ATLAS

August 5, 2016 2 / 14

Steven Schramm's talk

Shin-Shan Yu's talk

arXiv:1507.00966
ET\text{miss}+X \text{ a.k.a. Mono-X}

- X from ISR jet, b, t, γ, W, Z
- X from mixing with mediator
- X from pair ed \bar{t}t, \bar{b}b

ATLAS

\text{Preliminary}

2 b-tags

\text{Resolved}

200 400

\text{Data/Pred}

0.5 1 1.5

600 800 1000 1200

\text{Data}
• Key observables - imbalanced transverse momentum E_{T}^{miss}

• Irreducible background: $Z(\nu\nu)$+jets

 • jets might be mis-reconstructed as b-jets, γ, W, Z

ET$^{miss}+$jet

![Graph of ET$^{miss}+$jet](image1)

ET$^{miss}+t$

![Graph of ET$^{miss}+t$](image2)

ET$^{miss}+bb/\bar{t}\bar{t}$

![Graph of ET$^{miss}+bb/\bar{t}\bar{t}$](image3)
Boosted jet substructure technique is used in hadronic W/Z/H
- No significant excess observed so far
- DM mass exclusion up to \(\sim 550 \) GeV
- Vector Mediator mass exclusion up to 1.95 TeV
2. Resonance

- Why 'di2photon searches'
- Fully reconstructed resonances: simplest way to discover new particles
- Statistically significant peak over a smooth background
- Experimentally robust
- Small systematics
- Difficult for unknown backgrounds to mimic
 ⇒ simple yet striking signature!

Number of events $m_{\gamma\gamma}$

Interest of dijet data scouting

- Should be detected also in dijets
- Standard analysis not sensitive to masses below 1.2 TeV
- "Data scouting" sensitive to lower dijet mass
- 8 TeV results are public, no observed excesses
- Needed also at 13 TeV, very interesting

The production at LHC is allowed!

Final states with high p_T photons:
- Generally low background at hadron colliders
- Good mass resolution

Many theoretical models

Spin20
Spin22

Entries
Heavy Resonances

Neutral Charge

- dilepton
 - e, μ
 - τ

Charged

- M_x
 - l
 - v

New fermions
 - top partners

W(Z,H)

Dilepton:
- disphoton
- diboson
- $Z\gamma$

Dijet:
- quark
- gluon

Top:
- W
- b

Courtesy S. Rahatlou
Z’ dilepton

ATLAS Highest dielectron invariant mass
2.38 TeV

ET = 889 GeV

ET = 868 GeV
Di-Lepton

Same Flavor Opposite Sign (ee, μμ, ττ)

- Dominant background: Model independent shape-based (W+jets, QCD) in the dielectron channel
- Isolated e/mu with pT > 35/53 GeV

Lepton Flavor Violation (eμ, eτ, μτ)

- Same Sign (ee, μμ): \(Z_{SSM}^{3\% \text{ width}} > 4 \text{ TeV}\)
- Same Sign (ee, μμ): \(Z'_{0.5\% \text{ width}} > 3.36 \text{ TeV}\)

- RPV (\(\lambda_{311}^{I} = \lambda_{132}^{I} = \lambda_{231}^{I} = 0.2\)) > 3.3 TeV
- RBH (n=6) > 4.5 TeV

\[\text{Observed limit} \quad \text{Expected limit}\]

\[\text{Data} \quad \text{Preliminary}\]

\[\text{leptons} \quad \text{jets} \quad \text{bkg events}\]

\[\text{SR} \quad \text{Fitted bkg events}\]

2015

2016
Lepton+ET^{\text{Miss}}

ATLAS Preliminary
\[\sqrt{s} = 13 \text{ TeV}, \ 13.3 \text{ fb}^{-1} \]
\[W' \rightarrow e\nu \text{ selection} \]

- Data
- W (2 TeV)
- W (3 TeV)
- W (4 TeV)
- Top quark
- Multijet
- Z/\gamma^* (4 TeV)
- Diboson

2016

\[\text{Data / Bkg} \]

2015

SSM \(W' > 4.74 \text{ TeV} \)

SSM \(W' > 3.3 \text{ TeV} \)
the highest dijet invariant mass
7.7 TeV
Background modeled by parametrized function for search

\[f(x) = \rho_1 (1 - x)^p x \]

<table>
<thead>
<tr>
<th>Model</th>
<th>95% CL Exclusion limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum black holes, ADD</td>
<td>8.7 TeV</td>
</tr>
<tr>
<td>(BLACKMAX generator)</td>
<td>8.7 TeV</td>
</tr>
<tr>
<td>Excited quark</td>
<td>5.6 TeV</td>
</tr>
<tr>
<td>(W')</td>
<td>5.5 TeV</td>
</tr>
<tr>
<td>(W^*)</td>
<td>2.9 TeV</td>
</tr>
<tr>
<td>(W^*)</td>
<td>3.3 TeV</td>
</tr>
<tr>
<td>Contact interactions ((\eta_{LL} = +1))</td>
<td>12.6 TeV</td>
</tr>
<tr>
<td>Contact interactions ((\eta_{LL} = -1))</td>
<td>19.9 TeV</td>
</tr>
</tbody>
</table>

\(b^* \) (BR(b*→ bg)=0.85) > 2.3 TeV
\(Z' \) > 1.5 TeV
The lowest mass (down to 100 GeV) probed by boosted dijet final state
A broad mass - leptophobic Z’ coupling parameter space constrained by combining various dijet channels.
Combined with DM Interpretation

- Complementary searches by **mono-X** and **dijet**
- Dijet searches cover a broad mediator mass range
- Results highly depend on choice of coupling parameters

\[\mathcal{L} = g_q \bar{q} \gamma^\mu q Z^\prime_\mu \]

DM Simplified Model Exclusions

ATLAS Preliminary

August 2016

\[
\begin{align*}
\text{DM Mass [TeV]} & \quad \text{Mediator Mass [TeV]} \\
0 & \quad 0 \\
0.2 & \quad 0.2 \\
0.4 & \quad 0.4 \\
0.6 & \quad 0.6 \\
0.8 & \quad 0.8 \\
1 & \quad 1 \\
1.2 & \quad 1.2 \\
1.4 & \quad 1.4 \\
1.6 & \quad 1.6 \\
\end{align*}
\]

- **Axial-vector mediator, Dirac DM**
 - \(g_q = 0.25, g_{DM} = 1 \)
 - \(g_q = 0.1, g_{DM} = 1.5 \)
Non-trivial interference in gg to $t\bar{t}$ production between SM and type-II 2HDM

Reinterpretation of 8TeV analysis with addition of boosted channel

ATLAS Simulation Preliminary
\$\sqrt{s} = 8$ TeV, $\int L dt = 20.3$ fb$^{-1}$

S+I after det. sim. and event sel.
m$_{t\bar{t}} = 500$ GeV, $\tan \beta = 9.00$

$\sin(\beta - \alpha) = 1$

Powheg+Pythia6

ATLAS Preliminary
\$\sqrt{s} = 8$ TeV, $\int L dt = 20.3$ fb$^{-1}$

Data 2012
A+$tt(S+I)<7$

tt

$\tan \beta = 0.7$

Pre-fit background

First Results

$\tan(\beta)>0.8$

$\tan(\beta)>0.5$
Michael Anthony Buttignol's talk

- **Hadronic W' tb**
 - Only right-handed interaction searched for
 - W'\text{R} resonance with narrow width (3%)
 - Top-tagging (AK8 jets): (0.3% mistag)
 - B-tagging (AK4 jets): loose WP (10% mistag)
- **Event selection**
 - \(\geq 2\) high-\(p_T\) jets,
 - 1 t-tagged AK8 jet,
 - 1 b-tagged AK4 jet with \(m_{SD}\) < 70 GeV,
 - \(|\Delta\phi(j_1, j_2)| > \pi/2\) rad,
 - \(|\Delta y(j_1, j_2)| < 1.3\)

- **QCD multijet estimated from data**

M_{tb} distribution (postfit)

\[\text{M}_{tb} \text{ distribution (postfit)} \]

- CMS Preliminary
- 2.55 fb^{-1} (13 TeV)

\[\text{M}_{tb} \] (e channel, 2 b-tags)

- CMS Preliminary
- 12.9 fb^{-1} (13 TeV)

\[W'_{\text{R}}: [1\sim 2] \text{ TeV} \]

\[W'_{\text{R}}: [1\sim 2.67] \text{ TeV} \]

Note: pull = (data-background)/\(\sigma\)

- B2G-16-009
- 08/06/2016
- ICHEP 2016 / M. Buttignol

- B2G-16-017
- 08/06/2016
- ICHEP 2016 / M. Buttignol

W'_{\text{R}}: [1\sim 2] TeV

W'_{\text{R}}: [1\sim 2.67] TeV
VLQ - Spin 1/2, colored, charged particles with both left- and right-handed coupling to charged currents.

- **pair production** through QCD - dominant in low mass
 Most channels have been updated with 2015 data
- **single production** through EWK coupling - dominant in high mass (model dependent)
 New results shown below.

\[m(T/Y, \sqrt{c_L^2 + c_R^2} = 1/\sqrt{2}) > 1.44 \text{ TeV} \]

\[m_T(C(bW)=1, BR(tZ)=0.25) > 1.37 \text{ TeV} \]
• Search for VV/Vh/hh resonance in *leptonic/hadronic* decay channels using **large-R jets with jet substructure techniques**

```
VV/Vh/hh Resonance

Z(\ell\ell)V  Z(\nu\nu)V  W(\nu\ell)V  VV(JJ)

Z(\ell\ell)h  Z(\nu\nu)h  W(\nu\ell)h  V(J)h  hh
```

- \ell: lepton
- \nu: neutrino
- J: jet
- b: bottom quark
Z(\ll)V

Z(vv)V

W(lv)V

VV(JJ)

ATL-CONF-2016-082

ATL-CONF-2016-082

ATL-CONF-2016-062

ATL-CONF-2016-055

B2G-16-010

B2G-16-020

Z(\ll)h

Z(vv)h

W(lv)h

V(J)h

hh

ATL-CONF-2016-083

ATL-CONF-2016-049

B2G-16-008

2015

2015

2015

2015

2016

2016

2016

Preliminary

CMS
Revisit diboson excesses in Run1

ATLAS

Excesses not confirmed in Run2

Run1

Excesses not confirmed in Run2

Run1

ATLAS Preliminary

13 TeV, 3.2 fb^{-1}

WZ selection

ATLAS

13 TeV, 3.2 fb^{-1}

WW selection

CMS

13 TeV, 3.2 fb^{-1}

JHEP12(2015)055

m= 2TeV

3.4σ local

2.5σ global

EPJC 76 (2016) 237

m=1.8 TeV

2.9σ local

1.9σ global

ATL-CONF-2016-055

2015+2016

B2G-16-003

2015
- RS Graviton mass limit up to 2 TeV
- HVT W' mass limit up to 2.4 TeV
- a joint interpretation of VV/Vh channel
Diphoton

$E_T, \eta, \phi, E_{Tiso} = 346$ GeV, $-1.26, 2.26, -0.76$ GeV.

$E_T, \eta, \phi, E_{Tiso} = 334$ GeV, $-0.52, -0.84, 5.44$ GeV

$m_{\gamma\gamma} = 728$ GeV

the Heaviest invariant mass

2.2 TeV

$E_T = 1.1$ TeV

$E_T = 1.1$ TeV

ATLAS EXPERIMENT

Run Number: 302956, Event Number: 2656107838
Date: 2016-06-29 14:32:52 CEST
Significant excesses observed in 2015 data

Diphoton in 2015

Significance in 2015

- m = 750 GeV (Γ/M = 6%)
 3.9σ (local)/2.1σ (global)
 \[\rightarrow 3.4σ \text{ (local)/}~2σ \text{ (global)} \] reprocessing

- m = 760 GeV (Γ/M = 1.4 × 10^{-4})
 2.9σ (local)/<1σ (global)
 \[\rightarrow 3.4σ \text{ (local)/}<1.6σ \text{ (global)} \] 2015+8 TeV

purity ~90%

mass resolution (~750 GeV) <1%

16th April 2016 – 20:32 13

The uncertainty on the purity corresponds to the impact of the relative normalization of the reducible background, the impact of the parton-level mass interval, are taken into account, uncorrelated from bin to bin.

- MC statistical uncertainties, which are ranging from but fully correlated across the full mass range. These sources are the shape of the reducible background,

• D states \[7.2. \text{Functional form approach} \]

- Validation of functional form and uncertainty from simulation + variations above + jet, jet+jet shape from control regions,

•shape from DIPHOX NLO parton level calculation, re-weight Sherpa full-sim \[D \]

- Systematics smaller than 30% of statistical error and decreasing with mass

- To predict the shape of the photon+jet and dijet backgrounds, control samples where one or two of the diphoton events generated with \[D \]

= \[D \](local)/~2σ (global)

\[\rightarrow 3.4σ \text{ (local)/}~2σ \text{ (global)} \] reprocessing

Bruno Lenzi (CERN)

Chiara Rovelli’s talk

PRL 117(2016) no.5, 051802
Significance in 2015+2016:

\(m=710 \, \text{GeV} \) (\(\Gamma/M=10\% \))

2.3\(\sigma \) (local)/\(<1\sigma \) (global)

\(m=760 \, \text{GeV} \) (\(\Gamma/M=1.4\times10^{-4} \))

\(<1\sigma \) (local)
Resonance search summary

- Up to 25% mass limit increase by extending 2015 to 2016
- 50% of the analyses updated to Run2
3. Unconventional Signatures
Unconventional Signatures

- Long-lived particles
- Multiple-charged particles

MoEDAL

LHCb

Detector subsystems
- Low-threshold NTD array (z/β > 5)
- High-charge catcher NTD array (z/β > 50)
- TimePix radiation background monitor
- Monopole trapping detector

The 7th LHC experiment, located at IP8
- ~70 members, 25 institutes

MoEDAL probes messengers of new physics which are inaccessible to other LHC experiments.

Direct HIP/monopole detection at colliders (3)
1) General-purpose detectors
2) Nuclear-track detectors
3) Induction technique
 - Expect monopole-nucleus binding energy ~100 keV (Rept. Prog. Phys. 69, 1637 (2006), arXiv:hep-ex/0602040)
 - Persistent current after passage through superconducting coil

LHCb: a general-purpose detector in the forward direction
- Tracking system
- ECAL
- HCAL
- MUON
- VELO
- RICH
- Magnet

JINST 3 (2008) S08005
IntJModPhys A30 (2015) 1530022

Pieter David (Nikhef)

Electroweak-scale exotica with LHCb
ICHEP 2016

J. Antonelli ICHEP 2016, Aug 6th

Not pictured:
- stopped particles

J. Antonelli ICHEP 2016, Aug 6th
Complementary searches from LHCb and ATLAS/CMS to extend proper lifetime coverage:
- LHCb: \(O(10^{-5}) \sim O(10^{-2})\) m
- ATLAS: \(O(0.1) \sim O(100)\) m

LHCb-PAPER-2016-014 (in preparation)
• No excess found in the data

Lepton jet: collimated jet-like structures containing e/μ/pions

Displaced e-μ pair: large transverse impact parameter \(d_0\) for analysis
Magnetic Monopoles

Cross section limits versus magnetic charge

Probe magnetic charge $|g| > 1.5g_D$ (up to 4 g_D) for the first time at the LHC

Probe masses > 2500 GeV (up to 3500 GeV) for the first time at the LHC

Magnetic monopole masses > 2500 GeV
Magnetic monopole charge $|g| > 1.5g_D$ (up to 4 g_D)

ATLAS magnetic monopole mass

| $|g|$ | g_D |
|------|------|
| spin-1/2 | 1340 |
| spin-0 | 1050 |

For comparison

ATLAS 8 TeV ($\sigma =$ 1340 ± 1050 GeV) (arXiv:1509.08059)

arXiv:1604.06645
• LHC experiments conducting BSM searches in broad and complementary signatures

• Known excesses (Diboson in Run1 and Diphoton in 2015) not confirmed using 2016 data

• No new significant excesses observed. Set new frontier scale:
 • Contact Interaction energy: 25.2 TeV
 • ADD BH mass: 9.55 TeV
 • W' mass: 4.74 TeV
 • Dark photon lifetime: 2.5~100 mm (dark photon 400 MeV)
 • Magnetic charge: $|g|>1.5g_D$ (up to 4 g_D)

• More data to come - Stay tuned!
Backup
New Results for ICHEP

• ATLAS Exotics:
 • 18 conf notes; 1 submitted paper
 • https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults
 • https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Summer2016-13TeV

• CMS Exotics:
 • 22 conf. notes; 1 submitted paper
 • https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

• CMS Beyond 2 Generations:
 • 5 conf. notes submitted for ICHEP
 • https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G

• LHCb Results
 • 1 conf. notes
 • https://lhcb.web.cern.ch/lhcb/Physics-Results/LHCb-Physics-Results.html
Amazing Performance from LHC

• Record breaking luminosity in 2016!
• Most selected results updated with 2015+2016 13TeV data
 • 2016 data (~13 fb⁻¹): comparable statistics w.r.t. Run1 in all system mass
 • Results expected to surpass all Run1 sensitivity

CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:22 to 2016-08-07 05:35 UTC

- 2010, 7 TeV, 45.0 fb⁻¹
- 2011, 7 TeV, 6.1 fb⁻¹
- 2012, 8 TeV, 23.3 fb⁻¹
- 2015, 13 TeV, 4.2 fb⁻¹
- 2016, 13 TeV, 21.1 fb⁻¹

- Run1

2015

2016

ratios of LHC parton luminosities: 13 TeV / 8 TeV

- gg
- Σqq
- qg

J. Stirling

20.3 fb⁻¹ (run-I, 8 TeV) / 3.2 fb⁻¹ (run-II winter, 13 TeV) = 6.3

20.3 fb⁻¹ (run-I, 8 TeV) / 13.3 fb⁻¹ (now, 13 TeV) = 1.5

Mx=4 TeV x67 (qq)

MSTW2008NLO

WJS2013
Shin-Shan Eiko Yu

Summary Of All Mono-X Channels

- No excess observed
- Vector/Axial mediator mass up to 1.95 TeV excluded
- (Pseudo) scalar mediator mass up to (430) 100 GeV

Mono-Jet/Jets/Hadronic W And Z

2016 data

Vector Mediator

- No excess observed
- Vector/Axial mediator mass up to 1.95 TeV excluded
- (Pseudo) scalar mediator mass up to (430) 100 GeV

Pseudo-scalar Mediator

DM Mass Exclusions

Dark Matter Summary - ICHEP 2016

- DM + jets/V(ν) ($g_{DM} = 1$, $g_{ν} = 0.25$)
- DM + γ ($g_{DM} = 1$, $g_{γ} = 0.25$)
- DM + Z(0,τ) ($g_{DM} = 1$, $g_{τ} = 0.25$)
- DM + Z(τ,τ) ($g_{DM} = 1$, $g_{τ} = 0.25$)
- DM + H(γγ/γν) ($g_{DM} = 1$, $g_{ν} = 0.25$)
- DM + jets/V(ν) ($g_{DM} = 1$, $g_{ν} = 0.25$)
- DM + δ (ν) ($g_{DM} = 0.25$, $g_{δ} = 1$)
- DM + δ (τ) ($g_{DM} = 0.25$, $g_{δ} = 1$)
- DM + δ (t) ($g_{DM} = 0.25$, $g_{δ} = 1$)
- DM + δ (tt) ($g_{DM} = 0.25$, $g_{δ} = 1$)

Exclusion Limits

- Observed exclusion 95% CL

 DM Mass Exclusions

- Observed exclusion 95% CL

Model Exclusions

- CMS Preliminary

 Vector Mediator

- CMS Preliminary

 Scalar Mediator

DM-nucleon scattering cross sections

- BR($h(125) → invisible) < 0.44$ (0.56 expected)
- Results recast to limits on SI/SD DM-nucleon scattering cross sections

Axial-vector Mediator

- Dirac DM ($g_{ν} = 0.25$, $g_{DM} = 1$)
- Observed exclusion 95% CL

Scalar Mediator

- Observed exclusion 95% CL

DM-nucleon scattering cross sections

- 12.9 fb$^{-1}$ (13 TeV)

CMS DM Summary
• Using jet substructure techniques to search in lepton+jet and full hadronic jet channels.

\[Z'_{TC2} \text{ (1.2\% width)} > 2.2 \text{ TeV} \]
\[Z'_{TC2} \text{ (3\% width)} > 3.2 \text{ TeV} \]
The largest combined significance

\[m = 1.6 \text{ TeV (narrow width)} \]
\[2.4 \sigma (\text{local})/<1\sigma (\text{global}) \]

\[m = 0.9 \text{ TeV (1.4x10}^{-4} \text{ width)} \]
\[2.2 \sigma (\text{local})/<1\sigma (\text{global}) \]