Results and prospects on bottom physics of the phys

- Flagship results and novelties in CP violation and rare decays
- Flavour anomalies
- Upcoming and long-term prospects

Vincenzo Vagnoni

CERN and INFN Bologna

on behalf of the LHCb collaboration with results from

The CKM Unitarity Triangle

- UT defined by two parameters only → can be overconstrained
- The height (irreducible complex phase $\bar{\eta}$) controls the strength of *CP* violation in the Standard Model

Where we are

- Don't forget: relevant inputs from Lattice QCD and great work from the Heavy Flavour Averaging Group (http://www.slac.stanford.edu/xorg/hfag)
- Great success of the Standard Model CKM picture!
 - All of the measurements agree in a highly profound way
 - In the presence of relevant New Physics effects, the various contours would not cross each other in a single point

But...

... physicists are never satisfied!

- Although the Standard Model (of particle physics) works beautifully up to a few hundred GeV, it must be an effective theory valid up to some scale Λ
- The good reasons to believe that it is incomplete are still there, e.g.
 - Missing dark matter candidate
 - CP violation for dynamical generation of BAU largely insufficient
 - **—** ...
- We must search for
 - New particles and interactions
 - New sources of CP violation

Precision measurements of *CP* violation and rare decays: why important?

 Instead of searching for NP particles directly produced, look for their indirect effects to low energy processes (e.g. b-hadron decays)

 General amplitude decomposition in terms of couplings and scales → in presence of sizeable SM contributions, NP effects might be hidden

$$A = A_0 \left[c_{\text{SM}} \frac{1}{M_{\text{W}}^2} + c_{\text{NP}} \frac{1}{\Lambda^2} \right]$$

- Need high precision measurements of theoretically clean observables
- Note: from present picture in the flavour sector, still room for NP at 10-20%
- Studying CP-violating and flavour-changing processes → two fundamental tasks can be accomplished
 - Identify new symmetries (and their breaking) beyond the SM
 - Probe mass scales not accessible directly at nowadays colliders

A luminous (and beautiful) world!

 Several experiments at different machines contributed/contributing to the field in the last 15 years

Experiment	∫£ dt [fb ⁻¹]	$\sigma_{\!\!_{beauty}}$ [μ b]	End of life
BaBar	530 (total)	0.001 [e+e at Y(4S)]	2008
Belle	1040 (total)	0.001 [e+e at Y(4S)]	2010
CDF/D0	12 (total)	100 [pp at 2 TeV]	2011
ATLAS/CMS	55 (so far)	250-500 [pp at 7-13 TeV]	> 2030
LHCb*	4.2 (so far)	250-500 [pp at 7-13 TeV]	> 2030

^{*} Forward detector optimised for beauty and charm physics with levelled luminosity to limit pileup effects

One milestone of modern beauty physics

 $B_{\overline{s}}^0$

• Golden mode $B_s \rightarrow J/\psi \phi$ proceeds (mostly) via a $b \rightarrow c\bar{c}s$ tree diagram

• Interference between B_s mixing and decay graphs $\bar{c} / \int J/\psi$

• Measures the phase-difference ϕ_s between the two diagrams, precisely predicted in the SM to be ϕ_s =-37.4 ± 0.7 mrad \rightarrow can be altered by New Physics

 $ar{B}_{\!S}^0$

But also affected by small pollution of sub-leading SM amplitudes that must be taken under control

ϕ_s from $b \rightarrow c\bar{c}s$ transitions

- Several measurements at the Tevatron and the LHC
- World average
 - $\phi_s = -30 \pm 33 \text{ mrad}$
- Still compatible with the SM at the present level of precision

Exp.	Mode	Dataset	$\phi_s^{car{c}s}$	$\Delta\Gamma_s~(\mathrm{ps}^{-1})$	Ref.
CDF	$J\!/\!\psi\phi$	$9.6{ m fb}^{-1}$	[-0.60, +0.12], 68% CL	$+0.068 \pm 0.026 \pm 0.009$	Phys. Rev. Lett. 109, 171802 (2012)
D0	$J\!/\psi\phi$	$8.0{\rm fb}^{-1}$	$-0.55^{+0.38}_{-0.36}$	$+0.163^{+0.065}_{-0.064}$	Phys. Rev. D85 , 032006 (2012)
ATLAS	$J\!/\!\psi\phi$	$4.9{ m fb}^{-1}$	$+0.12 \pm 0.25 \pm 0.05$	$+0.053 \pm 0.021 \pm 0.010$	Phys. Rev. D90 , 052007 (2014)
ATLAS	$J\!/\!\psi\phi$	$14.3{\rm fb}^{-1}$	$-0.123 \pm 0.089 \pm 0.041$	$+0.096 \pm 0.013 \pm 0.007$	arXiv:1601.03297
ATLAS	above 2	combined	$-0.098 \pm 0.084 \pm 0.040$	$+0.083 \pm 0.011 \pm 0.007$	arXiv:1601.03297
CMS	$J\!/\!\psi\phi$	$19.7{\rm fb}^{-1}$	$-0.075 \pm 0.097 \pm 0.031$	$+0.095 \pm 0.013 \pm 0.007$	Phys. Lett. B757 , 97–120 (2016)
LHCb	$J/\psi K^+K^-$	$-3.0{\rm fb}^{-1}$	$-0.058 \pm 0.049 \pm 0.006$	$+0.0805 \pm 0.0091 \pm 0.0033$	Phys. Rev. Lett. 114 , 041801 (2015)
LHCb	$J/\psi \pi^+\pi^-$	$3.0{ m fb^{-1}}$	$+0.070 \pm 0.068 \pm 0.008$	_	Phys. Lett. B736 , 186 (2014)
LHCb	above 2	combined	$-0.010 \pm 0.039 (tot)$	_	Phys. Rev. Lett. 114 , 041801 (2015)
LHCb	$D_s^+D_s^-$	$3.0\mathrm{fb}^{-1}$	$+0.02 \pm 0.17 \pm 0.02$	_	Phys. Rev. Lett. 113 , 211801 (2014)

CP violation in $B_s - \overline{B}_s$ mixing

 CP violation in neutral B-meson mixing manifests itself if

$$\mathcal{P}(B_q \to \bar{B}_q) \neq \mathcal{P}(\bar{B}_q \to B_q)$$

- Interest triggered by a measurement from D0 yielding an anomalous likesign dimuon asymmetry
 - PRD 89 (2014) 012002
- Precise measurements of semileptonic asymmetries from LHCb do not confirm the anomaly
- Latest measurement of $a_{sl}(B_s)$ using $B_s \rightarrow D_s(KK\pi)\mu\nu X$ decays

$$\frac{N(D_s^-\mu^+) - N(D_s^+\mu^-)}{N(D_s^-\mu^+) + N(D_s^+\mu^-)}$$

Note: $a_{sl}(B_d)$ and $a_{sl}(B_s)$ are very small in the SM

$$a_{\rm sl}^s = (2.22 \pm 0.27) \times 10^{-5} \text{ for } B_s^0$$

$$a_{\rm sl}^d = (-4.7 \pm 0.6) \times 10^{-4} \text{ for } B^0$$

Artuso, Borissov, Lenz [arXiv:1511.09466]

PRL 117 (2016) 061803

$$a_{\rm sl}^s = (0.39 \pm 0.26({\rm stat}) \pm 0.20({\rm syst}))\%$$

Some novelties in the $B^0-\overline{B}^0$ system too

- LHCb measures time-dependent *CP* violation in the $B^0 \rightarrow D^+D^-$ decay
 - Complementary information on $\sin 2\beta$ through $b \rightarrow c\bar{c}d$ transitions
 - − Comparison with $B^0 \rightarrow J/\psi K_S$ constrains penguin contributions to $B \rightarrow DD$
- Consistent with SM and no penguin pollution
 - i.e. $S \approx -0.75$ (-sin2 β) and C=0

LHCb-PAPER-2016-037 in preparation

- New measurement of width difference $\Delta\Gamma_d/\Gamma_d$ by ATLAS
 - − Comparing decay-time distributions of $B^0 \rightarrow J/\psi K_S$ and $B^0 \rightarrow J/\psi K^{*0}$ $\Delta\Gamma_d/\Gamma_d = (-0.1 \pm 1.1 \text{ (stat.)} \pm 0.9 \text{ (syst.)}) \times 10^{-2}$ JHEP 06 (2016) 081, SM-like
- Most precise single measurement of $\Delta\Gamma_d/\Gamma_d$ to date

Tree-level determination of γ

• γ is the least known angle of the Unitarity Triangle

- Theoretically clean measurement from B→D(K*K)K B→D(4π)K
 tree-level transitions → genuine experimental effort!
- Two main routes
 - Time-independent measurements, e.g. using $B \rightarrow DK$ decays
 - Time-dependent analyses with B_s decays, e.g. $B_s \rightarrow D_s K$
- Combining a plethora of independent decay modes is the key to achieve the ultimate precision

Experimental status for γ

New combination of all available measurements from LHCb

LHCb measurements used in the combination

B decay	D decay	Method
$B^+ o Dh^+$	$D o h^+ h^-$	GLW/ADS
$B^+ o D h^+$	$D \to h^+\pi^-\pi^+\pi^-$	GLW/ADS
$B^+ o D h^+$	$D o h^+ h^- \pi^0$	GLW/ADS
$B^+ \to DK^+$	$D o K_{\scriptscriptstyle m S}^0 h^+ h^-$	GGSZ
$B^+ \to DK^+$	$D o K_{\scriptscriptstyle m S}^0 K^+ \pi^-$	GLS
$B^+ \to D h^+ \pi^- \pi^+$	$D o h^+ h^-$	GLW/ADS
$B^0 o DK^{*0}$	$D \to K^+\pi^-$	ADS
$B^0\! o DK^+\pi^-$	$D o h^+ h^-$	$\operatorname{GLW-Dalitz}$
$B^0 o DK^{*0}$	$D o K_{\scriptscriptstyle m S}^0\pi^+\pi^-$	GGSZ
$B_s^0 o D_s^\mp K^\pm$	$D_s^+\!\to h^+h^-\pi^+$	TD

 Significantly more precise than previous results from the B-factories and the Tevatron

Rare decays as another avenue to New Physics $B_{d,s} \rightarrow \mu^+ \mu^-$ from CMS and LHCb

 CMS and LHCb have performed a combined fit to their full Run 1 data sets

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 2.8^{+0.7}_{-0.6} \times 10^{-9} \ B_s^0$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = 3.9^{+1.6}_{-1.4} \times 10^{-10}$

- $B_s \rightarrow \mu\mu$ 6.2 σ significance was first observation
 - Compatibility with the SM at 1.2σ
- Excess of events at the 3σ level observed for the $B^0 \rightarrow \mu\mu$ hypothesis with respect to background-only
 - Compatible with SM at 2.2σ

$B_{d,s} \rightarrow \mu^+ \mu^-$ searches at ATLAS

- Recently also ATLAS published their searches with the full Run-1 dataset $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(0.9^{+1.1}_{-0.8}\right) \times 10^{-9}$
 - No significant signal is seen $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.2 \times 10^{-10} \ (95\% \ CL)$
 - A p-value of 4.8% is found for the compatibility of the results with the SM prediction

arXiv:1604.04263

Charmless rare decays from LHCb

- Particular class of decays that can proceed only through so-called annihilation diagrams
 - Very useful to test QCD calculations
- $B^0 \rightarrow K^+K^-$ decay observed for the first time after many years of searches
 - Significance 5.8σ

$$\mathcal{B}(B^0 \to K^+ K^-) = (7.80 \pm 1.27 \pm 0.81 \pm 0.21) \times 10^{-8}$$

 $\mathcal{B}(B^0_s \to \pi^+ \pi^-) = (6.91 \pm 0.54 \pm 0.63 \pm 0.19 \pm 0.40) \times 10^{-7}$

• The $B^0 \rightarrow K^+K^-$ is the rarest B-meson decay into a fully hadronic final state ever observed

LHCb-PAPER-2016-036 in preparation

At the dawn of a revolution? Lepton Flavour Universality in $B \rightarrow D^{(*)}\tau v$

• Ratio $R_D^{(*)} = BR(B \rightarrow D^{(*)}\tau v) / BR(B \rightarrow D^{(*)}\mu v)$ is sensitive e.g. to charged Higgs scenarios

- Measurements of R(D) and R(D*) by BaBar, Belle and LHCb
 - Overall average shows a 4σ discrepancy from the SM
- The ball is mainly in the experiments' court!
 - But also theory is at work

New result on $B \rightarrow D^{(*)} \tau v$ from Belle

-
$$\mathcal{R}(D^*) = 0.302 \pm 0.030(\text{stat}) \pm 0.011(\text{syst})$$

Submitted to PRD (arXiv:1607.07923)

• First measurement of $\mathcal{R}(D^*)$ using semileptonic tag.

-
$$\mathcal{R}(D^*) = 0.276 \pm 0.034(\text{stat})^{+0.029}_{-0.026}(\text{syst})$$

$$- \mathcal{P}_{\tau} = -0.44 \pm 0.47(\text{stat})^{+0.20}_{-0.17}(\text{syst})$$

Preliminary

hadronic tag $\tau \rightarrow hv$

• First measurement of τ polarization in $B \to D^* \tau \nu$ decay.

Also BaBar still contributing to the global endeavour

$$\mathcal{B}(\bar{B}^0 \to D^{*-}\pi^+\pi^-\pi^+) = (7.26 \pm 0.11 \pm 0.31) \cdot 10^{-3}$$
 to be submitted to PRD

- More analyses about b o c au
 u are ongoing at Belle and LHCb
- LHCb can also perform measurements with other b hadrons
 - e.g. B_s , B_c and Λ_b decays will help to better understand the global picture \rightarrow stay tuned!

Other flavour anomalies

- Angular analysis of $B^0 \rightarrow K^* \mu^+ \mu^-$
 - Observables are q^2 (dimuon mass squared) and 3 angles (helicity basis)
 - Angular distributions provide many observables sensitive to different sources of NP see e.g. JHEP 05 (2013) 137
 - Some global theoretical fits require non-SM contributions to accommodate the data e.g. JHEP 06 (2016) 092
 - However, genuine QCD effects can also
 be an explanation e.g. JHEP 06 (2016) 116
 more efforts needed to clarify the picture
- Ratio (R_K) of branching fractions of $B^+ \rightarrow K^+ \mu^+ \mu^-$ to $B^+ \rightarrow K^+ e^+ e^-$ expected to be unity in the SM with excellent precision
 - Observation of LFU violation would be a clear sign of NP
 - LHCb observed a 2.6σ deviation from SM in the low q² region PRL 113 (2014) 151601
 - New measurements expected soon, e.g. R_{K^*}

First evidence for CP violation in $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$ decays from LHCb

- CP violation has never been observed in the decays of any baryonic particle
- $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$ decays used to search for *CP*-violating asymmetries in triple products of final-state particle momenta
 - Local CP-violating effects studied as a function of the the relative orientation between the decay planes formed by the $p\pi^-$ and the $\pi^+\pi^-$ systems (Φ)

- An evidence for *CP* violation at the 3.3 σ level is found
- This represents the first evidence of *CP* violation in the baryon sector

Beauty cross section at 7 and 13 TeV

- Production of b quarks in high energy pp collisions at the LHC provides a sensitive test of QCD computations and constraints for PDFs
- LHCb measured the cross-section for the process $pp \rightarrow bbX$ at two different centre-of-mass energies within $2 < \eta < 5$
- Measurement done using semileptonic decays of b-flavored hadrons decaying into a charmed hadron in association with a muon

- The ratio of 13 to 7 TeV cross sections appears to depart from FONLL theory predictions at low η
 - Upcoming measurements with exclusive decays will provide further inputs to drive theory developments

LHC luminosity prospects

	LHC era			HL-LHC era	
	Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2021-24)	Run 4 (2027-30)	Run 5+ (2031+)
ATLAS, CMS	25 fb ⁻¹	$100 \; \mathrm{fb^{-1}}$	300 fb ⁻¹	→	3000 fb ⁻¹
LHCb	3 fb ⁻¹	8 fb ⁻¹	25 fb ⁻¹	50 fb ⁻¹	*300 fb ⁻¹

^{*} assumes a future LHCb upgrade to raise the instantaneous luminosity to 2x10³⁴ cm⁻²s⁻¹

- LHC is delivering luminosity at an incredibly high pace in Run-2
 - Prospects in the table above might be conservative
- Note that beauty production cross section roughly doubles passing from 7 to 13-14 TeV pp collisions
- LHCb upgrade comes already after Run-2, whereas the HL (phase-2)
 ATLAS and CMS upgrades come after Run-3
- LHCb is starting to consider a phase-2 upgrade for Run 5+

http://www.hep.manchester.ac.uk/theatre-of-dreams/index.html

Forthcoming LHCb upgrade and Belle II

- LHCb upgraded detector after Run-2 → instantaneous luminosity will be raised by a factor 5 from 4·10³² cm⁻²s⁻¹ to 2·10³³ cm⁻²s⁻¹
- The hardware trigger stage will be eliminated, and the trigger will become fully software based
 - running at 40 MHz and recording 20 kHz of output rate
- Some changes to the readout system, plus replacement of RICH photodetectors and of tracking detectors
- Very exciting prospects from the SuperKEKB machine and new Belle II detector
 - SuperKEKB will deliver almost two orders of magnitude larger integrated luminosity than KEKB
- Expected to start ramping up some time in 2019
- Eagerly waiting for new outstanding results!

Concluding remarks

- The SM is a stubborn animal, indeed!
- In the current unclear state
 with perspectives in
 fundamental physics, it is
 necessary to have a
 programme as diversified as
 possible

- In the unfortunate event that no direct evidence of NP pops out of the LHC, flavour physics can play a key role to indicate the way for future developments of elementary particle physics
- If instead, as we all hope, new particles will be detected in direct searches, flavour physics will be a crucial ingredient to understand the structure of what lies beyond the SM