

Flavor Physics

Charged lepton: results and future prospects

Ryu Sawada

ICEPP, the University of Tokyo

Aug. 9, 2016 ICHEP2016

Quarks mix

Neutrinos oscillate

How about charged leptons?

- In the SM, the charged lepton flavor is conserved
 - cLFV have not been observed
 - cLFV in SM through ν-oscillations is very tiny
- In many new theories beyond the SM (e.g. SUSY-GUT, SUSY-seesaw, extra-dimension...), the charged lepton flavor is naturally violated
 - Predicted branching ratios of cLFV rare decays are sizable !!
- Any observations of cLFV will be unambiguous evidences of new physics (NP)
- Complementary to direct searches at LHC
 - Sensitive to higher NP masses
 - color-less new particles are not constrained very much

- Muon g-2 : 3.6 σ difference from the SM value (BNL E821)
 - Next generation experiments at Fermilab (first result in FY2017—2018) and J-PARC
- Proton radius puzzle: 7 σ difference between ep and μp (CREMA@PSI)
 - e-μ universality violation ?
 - New results expected from CREMA, MUSE, PRad, MAMI
- B-physics
 - $B \rightarrow D\tau \nu \nu s B \rightarrow D\mu \nu : 3.9 \sigma difference from SM$
 - b→s flavor anomalies
 - BR(B⁺ \rightarrow K⁺ $\mu\mu$) / BR(B⁺ \rightarrow K⁺ee), BR(B_s \rightarrow $\phi\mu\mu$), B \rightarrow K^{*} $\phi\mu\mu$ angular analysis
- $H \rightarrow \mu \tau$: CMS observed with 2.4 σ significance in Run 1 data

- Muon channels are "Golden"
 - High intensity muon source available
 - O(10⁸) μ/sec @PSI, O(10¹¹) μ/sec in next generation experiments
 - Low background

If the "dipole" interaction is dominant. 1/390 $\mu \rightarrow e \gamma$ for AL target $O(10^2) - O(10^5)$ LFV couplings 1/170 $\times \tan^2 \beta$ G.Signorelli, FPCP2013

Sensitivity of the searches are already predicted region by BSM theories

cLFV: Correlations

ratio	LHT	MSSM (dipole)	MSSM (Higgs)
$\frac{Br(\mu^- \to e^- e^+ e^-)}{Br(\mu \to e\gamma)}$	0.021	$\sim 6 \cdot 10^{-3}$	$\sim 6 \cdot 10^{-3}$
$\frac{Br(\tau^- \to e^- e^+ e^-)}{Br(\tau \to e\gamma)}$	0.040.4	$\sim 1 \cdot 10^{-2}$	$\sim 1 \cdot 10^{-2}$
$\frac{Br(\tau^- \to \mu^- \mu^+ \mu^-)}{Br(\tau \to \mu \gamma)}$	$0.04\ldots0.4$	$\sim 2 \cdot 10^{-3}$	$0.06\dots0.1$
$\frac{Br(\tau^- \to e^- \mu^+ \mu^-)}{Br(\tau \to e\gamma)}$	0.040.3	$\sim 2 \cdot 10^{-3}$	$0.02 \dots 0.04$
$\frac{Br(\tau^- \to \mu^- e^+ e^-)}{Br(\tau \to \mu \gamma)}$	0.040.3	$\sim 1 \cdot 10^{-2}$	$\sim 1 \cdot 10^{-2}$
$\frac{Br(\tau^- \to e^- e^+ e^-)}{Br(\tau^- \to e^- \mu^+ \mu^-)}$	0.82.0	~ 5	0.30.5
$\frac{Br(\tau^- \to \mu^- \mu^+ \mu^-)}{Br(\tau^- \to \mu^- e^+ e^-)}$	0.71.6	~ 0.2	510
$\frac{R(\mu \text{Ti} \rightarrow e \text{Ti})}{Br(\mu \rightarrow e \gamma)}$	$10^{-3} \dots 10^2$	$\sim 5 \cdot 10^{-3}$	0.080.15

M.Blanke et al., Acta Phys.Polon.B41(2010)657

dipole coupling

four-fermion interaction through a boson (H, Z'...)

New physics can be discriminated from the correlations in searches

- Searching for cLFV decay $\mu^+ \rightarrow e^+ \gamma$
- Most intense DC μ^+ beam, $3\times10^7~\mu/\text{sec}$ @ PSI, Switzerland
- Detector
 - Photon: Largest LXe photon detector
 - Positron: gradient B-field, Ultra light drift chamber, high resolution e⁺ timing counter
- Data taking in 2008-2013
- Previous result with 2009-2011 dataset
 - Br UL: 5.7×10⁻¹³ (90%CL)

 PRL, 110 201801 (2013)

Analysis of full data completed

- Full data: Double the data statistics
- All data (including 2009-2012) were analyzed with improved analysis
 - Target alignment
 - Positron missing first turn analysis
 - AIF event veto
 - Photon-detector alignment
- 90%CL UL Sensitivity

5.3×10⁻¹³ for full data

 $(8.0 \times 10^{-13} \text{ for } 2009 - 2011 \text{ data})$

No visible excess in signal region

MEG: Fit on the full data

Final result of MEG

No excess was found and the new UL was set

$${\cal B}(\mu^+\! o e^+ \gamma) <$$
 4.2 ×10⁻¹³ @ 90% C.L.

arXiv:1605.05081 ready for publication from EPJC

×30 more stringent than the previous experiment

(×10 ⁻¹³)	2009-2011 data	2012-2013 data	All combined
Best Fit	-1.3	-5.5	-2.2
90% CL Upper limit	6.1	7.9	4.2
Sensitivity	8.0	8.2	5.3

Previous limit with 2009-2011 dataset: 5.7×10⁻¹³

UL: Feldman-cousins with profile-likelihood ratio ordering

Systematic uncertainties

UL increase by

- •5% by target position/shape uncertainties
- <1% by other systematic uncertainties

Future: MEG II

Future: MEG II

Ryu Sawada Flavor Physics : Charged leptons

MEG II physics reach

MEG II sensitivity will reach the MEG limit in a couple of months 10 times higher sensitivity with 3 years of data

µ→eee: Mu3e @ PSI

current limit: 1.0×10⁻¹² (SINDRUM, 1988)

- Stage I (2018–2020), BR < **10**⁻¹⁵
- Stage II (> 2020), BR < **10**⁻¹⁶

acceptance ~ 70% for $\mu^+ \rightarrow e^+ e^- e^+$ decay (3 tracks!)

thin (< 0.1% X₀), fast, high resolution detectors (minimum material, maximum precision)

275 M HV-MAPS (Si pixels w/ embedded amplifiers) channels

20 k ToF channels (SciFi and Tiles)

µ→e conversion

current limit: 7×10⁻¹³ (SINDRUM II)

	Background	Challenge	
μ→eγ	accidental	Detector resolution	
μN→eN	beam, cosmic ray	Beam quality	

No accidental BG → high beam intensity

signal rate depends on the target material

→ Discriminate physics model

Experiments:

COMET @ J-PARC

Mu2E @ Fermilab

current limit: 7×10⁻¹³ (SINDRUM II)

Cosmic Ray Veto not shown

- Target single event sensitivity: 2.6×10⁻¹⁷
- Fully funded
- Construction ongoing
- Physics data taking expected to start in ~2021

Mu2e @ Fermilab

Prototype detectors

CRV

Transport solenoid

Calorimeter

Tracker

current limit: 7×10⁻¹³ (SINDRUM II)

- Phase I (C-shaped muon solenoid, muon target in the detector), 2018 or 2019
 - Single event sensitivity: 3.1×10⁻¹⁵
- Phase II (Full apparatus shown above), 2021
 - Single event sensitivity: 2.5×10⁻¹⁷

current limit: 7×10⁻¹³ (SINDRUM II)

- NP prediction of BR is $O(10^{-7}-10^{-10})$
- Belle and Babar searches for ~50 channels of rare decays in tau pairs of O(10⁹)
 - No excess of events
 - Upper limits in O(10⁻⁸)
- Belle II
 - Accelerator upgrade is finished
 - Full physics run expected to start in 2019
 - 50 ab⁻¹ by 2023—2024
 - Expected sensitivity O(10⁻⁹–10⁻¹⁰)

cLFV searches at LHC

- cLFV searches through decays of SM particles and new particles
- Η→μτ
 - 8 TeV data
 - best fit Br= $0.84\pm0.39\%$ (2.4 σ excess) in CMS
 - no excess in ATLAS (Br < 1.43%)
 - 13 TeV data
 - no excess in CMS so far
 - Br < 1.2% (8 TeV best-fit value is not rejected)
- No excess over the SM is seen so far in other channels (Atlas, CMS and LHCb)
- Much more data coming in Run 2 and beyond

Prospects

Conclusions

- Charged lepton flavor experiments are powerful probes into new physics
- Many near-future experiments in the U.S., Europe and Asia have high potential to discover new physics in the next decade
- It is important to measure many channels for discriminating new physics

- Charged lepton flavor experiments are powerful probes into new physics
- Many near-future experiments in the U.S., Europe and Asia have high potential to discover new physics in the next decade
- It is important to measure many channels for discriminating new physics

Big surprises may be hiding where we haven't seen deeply enough yet

Backup

MEG II expected performances

PDF parameters	Present MEG	Upgrade scenario
e ⁺ energy (keV)	306 (core)	130
$e^+ \theta$ (mrad)	9.4	5.3
$e^+ \phi$ (mrad)	8.7	3.7
e^+ vertex (mm) Z/Y (core)	2.4 / 1.2	1.6 / 0.7
$\gamma \text{energy} (\%) (w < 2 \text{cm}) / (w > 2 \text{cm})$	2.4 / 1.7	1.1 / 1.0
γ position (mm) $u/v/w$	5/5/6	2.6 / 2.2 / 5
γ -e ⁺ timing (ps)	122	84
Efficiency (%)		
trigger	≈ 99	≈ 99
γ	63	69
e^+	40	88

MEG: Target uncertainty

- The target position and shape are measured by
 - Optical survey of cross marks
 - Positron data: hole position reconstruction
 - Approximation as paraboloid
 - 3D scanner
- The position uncertainty (0.3—0.5 mm) and the deformation uncertainty (difference of the two measurements) included as a systematic uncertainty as nuisance parameter.
 - e.g. 0.5 mm position error \sim 4 mrad error in the e γ angle

13% degradation in sensitivity

$$\mathcal{L}_{ ext{CLFV}} = rac{m_{\mu}}{(\kappa+1)\Lambda^2} ar{\mu}_R \sigma_{\mu
u} e_L F^{\mu
u} \ + rac{\kappa}{(1+\kappa)\Lambda^2} ar{\mu}_L \gamma_{\mu} e_L (ar{u}_L \gamma_{\mu} u_L + ar{d}_L \gamma_{\mu} d_L)$$

