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Quantum Field Theory is Organized by Scale

• Particle physics is organized by energy scale: UV −→ IR

• At longest distances (IR) only massless particles propagate.
This leads to macroscopic forces, (e.g. photon and
electromagetism)

• As energies increase (UV) more massive fields can be seen.
• First indirectly through their small effects on light particles
• Then, at sufficient energies, massive particles are produced and

(hopefully!!!) directly detected in experiments

Upshot:

At high energies there are more particle species, more interactions
possible, more information
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• The same paradigm often works in condensed matter physics.

For example: block spin renormalization of the Ising model
(Nearest neighbor interactions of spins: black vs white)

Figure: T < Tc : spins uniform

Figure: T > Tc : spins uncorrelated
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Major Theme in Formal Theory

• The idea that particle physics at high energies is more
complicated then at low energies is a unifying theme

• The task of formal theorists is to make this intuition precise
and quantitative

The a-Theorem:

• Define a quantity “a” for each quantum field theory

• a ≥ 0 is a measure of the number of degrees of freedom that
can be excited. It is a function of energy scale

• Prove that a is a monotonic function: aUV > aIR

Recent significant progress: Cardy, Intriligator,
Komargodski-Schwimmer, Cordova-Dumitrescu-Intriligator, · · ·
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The Challenge

• Why is this problem hard? Can’t we just count the number of
fields with masses less than a given energy scale?

• This is problematic because of strong coupling phenomena

• Consider for instance QCD:
• At high energies: quarks, gluons
• At low energies: mesons, baryons

In what sense is the IR simpler?!

• Need our measure of degrees of freedom a to be sufficiently
refined that it can handle this kind of example
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How to Define a

• Use the one operator that every quantum field theory
possesses: the energy momentum tensor Tµν(x) (conserved
currents from translational symmetry)

• For instance in Yang-Mills theory:

Tµν = F c
µαF

c
να −

1

4
δµνF

c
αβF

c
αβ

Note the sum over species c. So Tµν can be used to count
the number of colors. Similar expressions for other fields

• To compute a for any theory we look at correlation functions
of Tµν ’s

〈Tµ1ν1(x)Tµ2ν2(y)Tµ3ν3(z)〉 ∼ a
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Defining a Using Scattering Amplitudes

• Alternative definition, look at scattering amplitudes. These
amplitudes involve gravitons, as well as the rest of the theory.

For instance in Yang-Mills theory a can be determined from
the amplitude

Figure: Defining a from scattering amplitudes

• Of course, gravitons have not been experimentally detected
but they can be used as formal probes of the theory. This also
makes sense: gravity couples to everything, so its a good for
measuring degrees of freedom.
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Monotonacity of a from Scattering Amplitudes

• Remarkably, the same quantity a also shows up in a
4-graviton scattering amplitude

Figure: a as a function of energy scale

• This scattering amplitude depends on a center of mass energy
E of the gravitons. Thus it gives us a function a(E ).

• We want to show that this function is monotonic:

E1 > E2 =⇒ a(E1) > a(E2)



Monotonacity of a from Scattering Amplitudes

• Remarkably, the same quantity a also shows up in a
4-graviton scattering amplitude

Figure: a as a function of energy scale

• This scattering amplitude depends on a center of mass energy
E of the gravitons. Thus it gives us a function a(E ).

• We want to show that this function is monotonic:

E1 > E2 =⇒ a(E1) > a(E2)



Monotonacity of a from Scattering Amplitudes

• Remarkably, the same quantity a also shows up in a
4-graviton scattering amplitude

Figure: a as a function of energy scale

• This scattering amplitude depends on a center of mass energy
E of the gravitons. Thus it gives us a function a(E ).

• We want to show that this function is monotonic:

E1 > E2 =⇒ a(E1) > a(E2)



Monotonacity of a from Scattering Amplitudes

• Remarkably, the same quantity a also shows up in a
4-graviton scattering amplitude

Figure: a as a function of energy scale

• This scattering amplitude depends on a center of mass energy
E of the gravitons. Thus it gives us a function a(E ).

• We want to show that this function is monotonic:

E1 > E2 =⇒ a(E1) > a(E2)



Main Results

• The function a(E ) can be investigated using dispersion
relations.

From the optical theorem:

a(E1)− a(E2) =

∫ s=E1

s=E2

ds
σ(s)

s2
,

Where σ is the total cross section for two gravitons to
anything.

• This is positive definite and establishes the a-Theorem!
Komargodski-Schwimmer

• This line of investigation has been generalized in numerous
directions (e.g different spacetime dimensions, or condensed
matter applications)

Conclusions:
These ideas make rigorous our basic intuition that complexity in
physics grows with the energy scale!
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