Recent Progress on Renormalization Group Flow

Clay Córdova

School of Natural Sciences
Institute for Advanced Study

August 9, 2016
Quantum Field Theory is Organized by Scale

• Particle physics is organized by energy scale: $UV \rightarrow IR$
Quantum Field Theory is Organized by Scale

- Particle physics is organized by energy scale: $UV \rightarrow IR$
- At longest distances (IR) only massless particles propagate. This leads to macroscopic forces, (e.g. photon and electromagnetism)
Quantum Field Theory is Organized by Scale

- Particle physics is organized by energy scale: $UV \rightarrow IR$
- At longest distances (IR) only massless particles propagate. This leads to macroscopic forces, (e.g. photon and electromagnetism)
- As energies increase (UV) more massive fields can be seen.
Quantum Field Theory is Organized by Scale

- Particle physics is organized by energy scale: $UV \rightarrow IR$
- At longest distances (IR) only massless particles propagate. This leads to macroscopic forces, (e.g. photon and electromagnetism)
- As energies increase (UV) more massive fields can be seen.
 - First indirectly through their small effects on light particles
Quantum Field Theory is Organized by Scale

- Particle physics is organized by energy scale: $UV \rightarrow IR$
- At longest distances (IR) only massless particles propagate. This leads to macroscopic forces, (e.g. photon and electromagnetism)
- As energies increase (UV) more massive fields can be seen.
 - First indirectly through their small effects on light particles
 - Then, at sufficient energies, massive particles are produced and (hopefully!!!) directly detected in experiments
Quantum Field Theory is Organized by Scale

- Particle physics is organized by energy scale: $UV \rightarrow IR$
- At longest distances (IR) only massless particles propagate. This leads to macroscopic forces, (e.g. photon and electromagnetism)
- As energies increase (UV) more massive fields can be seen.
 - First indirectly through their small effects on light particles
 - Then, at sufficient energies, massive particles are produced and (hopefully!!!) directly detected in experiments

Upshot:
At high energies there are more particle species, more interactions possible, more information
Quantum Field Theory is Organized by Scale

- The same paradigm often works in condensed matter physics. For example: block spin renormalization of the Ising model (Nearest neighbor interactions of spins: black vs white)
Quantum Field Theory is Organized by Scale

- The same paradigm often works in condensed matter physics. For example: block spin renormalization of the Ising model (Nearest neighbor interactions of spins: black vs white)
Quantum Field Theory is Organized by Scale

• The same paradigm often works in condensed matter physics. For example: block spin renormalization of the Ising model (Nearest neighbor interactions of spins: black vs white)
Quantum Field Theory is Organized by Scale

- The same paradigm often works in condensed matter physics. For example: block spin renormalization of the Ising model (Nearest neighbor interactions of spins: black vs white)
Quantum Field Theory is Organized by Scale

- The same paradigm often works in condensed matter physics. For example: block spin renormalization of the Ising model (Nearest neighbor interactions of spins: black vs white)
Quantum Field Theory is Organized by Scale

- The same paradigm often works in condensed matter physics. For example: block spin renormalization of the Ising model (Nearest neighbor interactions of spins: black vs white)

Figure: $T < T_c$: spins uniform
Quantum Field Theory is Organized by Scale

• The same paradigm often works in condensed matter physics. For example: block spin renormalization of the Ising model (Nearest neighbor interactions of spins: black vs white)

Figure: \(T < T_c \): spins uniform
Quantum Field Theory is Organized by Scale

- The same paradigm often works in condensed matter physics. For example: block spin renormalization of the Ising model (Nearest neighbor interactions of spins: black vs white)

Figure: $T < T_c$: spins uniform

Figure: $T > T_c$: spins uncorrelated
Quantum Field Theory is Organized by Scale

- The same paradigm often works in condensed matter physics. For example: block spin renormalization of the Ising model (Nearest neighbor interactions of spins: black vs white)

Figure: $T < T_c$: spins uniform

Figure: $T > T_c$: spins uncorrelated
Quantum Field Theory is Organized by Scale

- The same paradigm often works in condensed matter physics. For example: block spin renormalization of the Ising model (Nearest neighbor interactions of spins: black vs white)

Figure: $T < T_c$: spins uniform
Quantum Field Theory is Organized by Scale

- The same paradigm often works in condensed matter physics. For example: block spin renormalization of the Ising model (Nearest neighbor interactions of spins: black vs white)

Figure: $T < T_c$: spins uniform

Figure: $T > T_c$: spins uncorrelated
Major Theme in Formal Theory

• The idea that particle physics at high energies is more complicated than at low energies is a unifying theme.
Major Theme in Formal Theory

• The idea that particle physics at high energies is more complicated than at low energies is a unifying theme.
• The task of formal theorists is to make this intuition precise and quantitative.
Major Theme in Formal Theory

- The idea that particle physics at high energies is more complicated than at low energies is a unifying theme.
- The task of formal theorists is to make this intuition precise and quantitative.

The a-Theorem:

- Define a quantity a for each quantum field theory.
- $a \geq 0$ is a measure of the number of degrees of freedom that can be excited. It is a function of energy scale.
- Prove that a is a monotonic function: $a_{UV} > a_{IR}$.

Recent significant progress: Cardy, Intriligator, Komargodski-Schwimmer, Cordova-Dumitrescu-Intriligator, ···
Major Theme in Formal Theory

- The idea that particle physics at high energies is more complicated than at low energies is a unifying theme.
- The task of formal theorists is to make this intuition precise and quantitative.

The a-Theorem:

- Define a quantity "a" for each quantum field theory.
Major Theme in Formal Theory

- The idea that particle physics at high energies is more complicated than at low energies is a unifying theme.
- The task of formal theorists is to make this intuition precise and quantitative.

The a-Theorem:

- Define a quantity “a” for each quantum field theory.
- $a \geq 0$ is a measure of the number of degrees of freedom that can be excited. It is a function of energy scale.
Major Theme in Formal Theory

- The idea that particle physics at high energies is more complicated than at low energies is a unifying theme.
- The task of formal theorists is to make this intuition precise and quantitative.

The a-Theorem:

- Define a quantity “a” for each quantum field theory.
- $a \geq 0$ is a measure of the number of degrees of freedom that can be excited. It is a function of energy scale.
- Prove that a is a monotonic function: $a_{UV} > a_{IR}$.

Recent significant progress: Cardy, Intriligator, Komargodski-Schwimmer, Cordova-Dumitrescu-Intriligator, ···
Major Theme in Formal Theory

- The idea that particle physics at high energies is more complicated than at low energies is a unifying theme.
- The task of formal theorists is to make this intuition precise and quantitative.

The a-Theorem:

- Define a quantity “a” for each quantum field theory.
- $a \geq 0$ is a measure of the number of degrees of freedom that can be excited. It is a function of energy scale.
- Prove that a is a monotonic function: $a_{UV} > a_{IR}$

Recent significant progress: Cardy, Intriligator, Komargodski-Schwimmer, Cordova-Dumitrescu-Intriligator, ⋯
Why is this problem hard? Can’t we just count the number of fields with masses less than a given energy scale?
The Challenge

- Why is this problem hard? Can’t we just count the number of fields with masses less than a given energy scale?
- This is problematic because of strong coupling phenomena
The Challenge

• Why is this problem hard? Can’t we just count the number of fields with masses less than a given energy scale?
• This is problematic because of strong coupling phenomena
• Consider for instance QCD:
The Challenge

• Why is this problem hard? Can’t we just count the number of fields with masses less than a given energy scale?
• This is problematic because of strong coupling phenomena
• Consider for instance QCD:
 • At high energies: quarks, gluons
The Challenge

- Why is this problem hard? Can’t we just count the number of fields with masses less than a given energy scale?
- This is problematic because of strong coupling phenomena
- Consider for instance QCD:
 - At high energies: quarks, gluons
 - At low energies: mesons, baryons

In what sense is the IR simpler?!
The Challenge

- Why is this problem hard? Can’t we just count the number of fields with masses less than a given energy scale?
- This is problematic because of strong coupling phenomena
- Consider for instance QCD:
 - At high energies: quarks, gluons
 - At low energies: mesons, baryons

In what sense is the IR simpler?!
The Challenge

- Why is this problem hard? Can’t we just count the number of fields with masses less than a given energy scale?
- This is problematic because of strong coupling phenomena
- Consider for instance QCD:
 - At high energies: quarks, gluons
 - At low energies: mesons, baryons

In what sense is the IR simpler?!

- Need our measure of degrees of freedom a to be sufficiently refined that it can handle this kind of example
How to Define a

- Use the one operator that every quantum field theory possesses: the energy momentum tensor $T_{\mu\nu}(x)$ (conserved currents from translational symmetry).
How to Define a

• Use the one operator that every quantum field theory possesses: the energy momentum tensor $T_{\mu\nu}(x)$ (conserved currents from translational symmetry)

• For instance in Yang-Mills theory:

$$T_{\mu\nu} = F_{\mu\alpha}^c F_{\nu\alpha}^c - \frac{1}{4} \delta_{\mu\nu} F_{\alpha\beta}^c F_{\alpha\beta}^c$$

Note the sum over species c. So $T_{\mu\nu}$ can be used to count the number of colors. Similar expressions for other fields
How to Define a

- Use the one operator that every quantum field theory possesses: the energy momentum tensor $T_{\mu \nu}(x)$ (conserved currents from translational symmetry).

- For instance in Yang-Mills theory:

$$ T_{\mu \nu} = F^c_{\mu \alpha} F^c_{\nu \alpha} - \frac{1}{4} \delta_{\mu \nu} F^c_{\alpha \beta} F^c_{\alpha \beta} $$

Note the sum over species c. So $T_{\mu \nu}$ can be used to count the number of colors. Similar expressions for other fields.

- To compute a for any theory we look at correlation functions of $T_{\mu \nu}$’s

$$ \langle T_{\mu_1 \nu_1}(x) T_{\mu_2 \nu_2}(y) T_{\mu_3 \nu_3}(z) \rangle \sim a $$
Defining a Using Scattering Amplitudes

- Alternative definition, look at scattering amplitudes. These amplitudes involve gravitons, as well as the rest of the theory.
Defining \(a \) Using Scattering Amplitudes

- Alternative definition, look at scattering amplitudes. These amplitudes involve gravitons, as well as the rest of the theory. For instance in Yang-Mills theory \(a \) can be determined from the amplitude.

![Diagram](image)

- Of course, gravitons have not been experimentally detected but they can be used as formal probes of the theory. This also makes sense: gravity couples to everything, so it's a good for measuring degrees of freedom.

Figure: Defining \(a \) from scattering amplitudes
Defining a Using Scattering Amplitudes

- Alternative definition, look at scattering amplitudes. These amplitudes involve gravitons, as well as the rest of the theory. For instance in Yang-Mills theory a can be determined from the amplitude

![Diagram](image)

Figure: Defining a from scattering amplitudes

- Of course, gravitons have not been experimentally detected but they can be used as formal probes of the theory. This also makes sense: gravity couples to everything, so it's a good for measuring degrees of freedom.
Monotonacity of a from Scattering Amplitudes

- Remarkably, the same quantity a also shows up in a 4-graviton scattering amplitude.
Monotonacity of a from Scattering Amplitudes

- Remarkably, the same quantity a also shows up in a 4-graviton scattering amplitude.

Figure: a as a function of energy scale
Monotonacity of a from Scattering Amplitudes

- Remarkably, the same quantity a also shows up in a 4-graviton scattering amplitude.

![Diagram showing a 4-graviton scattering amplitude with a center of mass energy E and a function $a(E)$.]

Figure: a as a function of energy scale

- This scattering amplitude depends on a center of mass energy E of the gravitons. Thus it gives us a function $a(E)$.
Monotonacity of a from Scattering Amplitudes

- Remarkably, the same quantity a also shows up in a 4-graviton scattering amplitude.

![Diagram](image)

Figure: a as a function of energy scale

- This scattering amplitude depends on a center of mass energy E of the gravitons. Thus it gives us a function $a(E)$.
- We want to show that this function is monotonic:

\[E_1 > E_2 \implies a(E_1) > a(E_2) \]
Main Results

- The function \(a(E) \) can be investigated using dispersion relations.

\[
\int_{s = E_1}^{s = E_2} \sigma(s) \, ds
\]

Where \(\sigma \) is the total cross section for two gravitons to anything.

This is positive definite and establishes the \(a \)-Theorem!

Komargodski-Schwimmer

This line of investigation has been generalized in numerous directions (e.g. different spacetime dimensions, or condensed matter applications).

Conclusions:

These ideas make rigorous our basic intuition that complexity in physics grows with the energy scale!
Main Results

- The function $a(E)$ can be investigated using dispersion relations. From the optical theorem:

$$a(E_1) - a(E_2) = \int_{s=E_2}^{s=E_1} ds \frac{\sigma(s)}{s^2},$$

Where σ is the total cross section for two gravitons to anything.
Main Results

- The function $a(E)$ can be investigated using dispersion relations. From the optical theorem:

$$a(E_1) - a(E_2) = \int_{s=E_2}^{s=E_1} ds \frac{\sigma(s)}{s^2} ,$$

Where σ is the total cross section for two gravitons to anything.

- This is positive definite and establishes the a-Theorem! Komargodski-Schwimmer
Main Results

- The function $a(E)$ can be investigated using dispersion relations. From the optical theorem:

$$a(E_1) - a(E_2) = \int_{s=E_2}^{s=E_1} ds \frac{\sigma(s)}{s^2},$$

Where σ is the total cross section for two gravitons to anything.

- This is positive definite and establishes the a-Theorem! Komargodski-Schwimmer

- This line of investigation has been generalized in numerous directions (e.g., different spacetime dimensions, or condensed matter applications)
Main Results

• The function $a(E)$ can be investigated using dispersion relations. From the optical theorem:

$$a(E_1) - a(E_2) = \int_{s = E_2}^{s = E_1} ds \frac{\sigma(s)}{s^2},$$

Where σ is the total cross section for two gravitons to anything.

• This is positive definite and establishes the a-Theorem! Komargodski-Schwimmer

• This line of investigation has been generalized in numerous directions (e.g. different spacetime dimensions, or condensed matter applications)

Conclusions:
These ideas make rigorous our basic intuition that complexity in physics grows with the energy scale!