Dark Matter Searches

Canada's Capital University

Mark Boulay
Carleton University
Ottawa, Ontario
Canada

Mark Boulay

The Dark Matter Problem

- Rotation curves measure the mass distribution
- Mass density distributed more broadly than visible objects
- Non-luminous halo required to describe rotation curves
- First found in 1933 by
 Zwicky from Coma Galaxy
 Cluster analysis

DISTRIBUTION OF DARK MATTER IN NGC 3198

Looking for WIMPs

1. Pick a target, build a detector for low energy nuclear recoils. Detection can include one or more channels (ionization, scintillation, heat, etc.) to aid with background discrimination.

Mitigate all sources of backgrounds.

- 2. Collect data. If no recoils beyond background, rule out regions of mass vs cross-section model space
- 3. If backgrounds are seen, go back to step 1.
- 4. If signal is seen, preferably confirm with multiple targets.

(Steps 1 to 3 typically ~10 years. Step 4 TBD.)

LUX & LZ

XENON-100 & 1T

CRESST

PICO

XMASS

DEAP-3600 & beyond

NEWAGE

DMTPC

DAMA/NaI

DAMA/LIBRA

NEWS-SNO

SuperCDMS-Soudan

SuperCDMS-SNOLAB

DAMIC

CDEX

KIMS-NaI

PandaX-II

DarkSide-50 & 20k

SABRE (N&S)

MiniCLEAN

Cogent

DRIFT

DARWIN

Edelweiss

DM-Ice

COSINE

KIMS

ANAIS

TREX-DM

NEWS

... 20 min talk, will try to provide a summary and outlook for recoil DM detectors

not covered here, but equally important are axion searches

SuperCDMS

SOUDAN

Leading limits published on low mass WIMPs

15 Ge iZIPs, 0.6 kg each
Operational Mar. 2012 – Nov. 2015
In CDMS II location

0.6 kg Ge

Operation ended late 2015

all Ge iZIPs

SNOLAB

Generation-2
experiment,
beginning ~2019
Aiming for unique
sensitivity to low
mass WIMPs

iZIPs: Ionization & Phonon

Detectors

interleaved
Z-sensitive
Ionization &
Phonon detector

PASSESS

PAS

3-D fiducialization in both ionization and phonon energies allows for efficient rejection of external backgrounds down to very low energies

Simultaneous measurement of ionization and phonons provides better than 1:10⁶ separation between NR and bulk ER

Operated at low bias (4V) to extract recoil energies on event-by-event basis

SuperCDMS SNOLAB Projections

Reach at lowest masses accomplished w/ CDMSlite (HV) style detectors with ultra-low (< 100 eV) threshold; will be **BACKGROUND** limited

start of science runs 2020

Dark Matter in CCDs

coherent elastic scattering

pixel

p

Point-like energy deposits from nuclear recoils Charge diffuses towards the CCD pixels gates, induced by WIMP interactions producing a "diffusion-limited" cluster

1) High-resistivity (10¹¹ donors/cm³), extremely pure silicon, fully-depleted over several 100s μm (typical CCDs few tens of μm)

CRESST - Detection Principle I

simultaneous read-out of two signals

- phonon channel:

 particle independent
 measurement of deposited
 energy (= nuclear recoil energy)
- (scintillation) light:
 different response for signal
 and background events for
 background rejection
 ("quenching")

Recent result from CRESST-II (arxiv 1509.01515)

CRESST-III Run LNGS starting August 2016

Expect x100 increase in sensitivity (arxiv 1503.08065)

Several other projects planning increase in low-mass sensitivity, many good ideas.

Noble liquid detectors

Noble liquid detectors can be scaled to the large target masses needed to probe the low cross-sections for ~high mass WIMPS (20-30+ GeV to TeVs)

Two-phase detectors (TPCs): large target mass, S1+S2 signal allows background discrimination (β/γ vs recoil) and position reconstruction

Single-phase (scintillation-only): simple detector designs, large target masses with little internal components

Two-phase xenon: XENON-100, XENON-1T, XENON-nT, LUX, LZ, PandaX-II and PandaX-xT

Single-phase xenon: XMASS

Two-phase argon: DarkSide-50, DarkSide-20k, Argo (300 tonnes), ArDM

Single-phase argon: DEAP-3600 (& beyond), miniCLEAN

Dual phase TPC for DM

Scintillation light (S1) and ionization charge from primary event, which is converted to proportional scintillation (S2) in gas phase. Time between S1/S2 and top PMT pattern used to localize event. S2/S1 provides recoil discrimination.

relatively "new" application in DM, about 10 years

PandaX experiment

PandaX = Particle and Astrophysical Xenon Experiments

Phase I: 120 kg DM 2009-2014

Phase II: 500 kg DM 2014-2017

PandaX-xT: multi-ton DM future

PandaX-III: 200 kg to 1 ton ¹³⁶Xe 0vDBD future

China Jinping Underground Laboratory

Deepest in the world (1μ/week/m²) and Horizontal access!

PandaX-II

Run history

Final candidates

Combined results

Large Underground Xenon

- ~1:1 ratio: 50 x 50 cm dodecagonal cylinder of highly reflective PTFE
- 370 kg LXe in total, for all crevices
 - 250 kg in active region (with field)
 - 118, 145, 100 kg fiducial across different analyses (depends on BG)
- 122 phototubes (2 x 61, top and bot)
 - Low BG, sensitive to 175 nm VUV
- Xe pre-purified of Kr-85, plus recirculated during run for impurities
- Ultra-low BG Ti cryostat, big thermos!
- ~3-4 keV NR threshold (point of 50% efficiency pre-discrimination of ER)

0.2% ER leak for ~50% NR accepted (approximate, as PLR used)

WIMP-nucleon SI Exclusion

(LUX. zepto = 10^{-21})

Our best, lowest exclusion is at 50 GeV: 2.2 x10⁻⁴⁶ cm² (That's 0.22 zeptobarns in σ!)

- 1 order of magnitude off XENON1T
- Within < 2 orders of LZ projection</p>
- Comparable to LUX 2015 reanalysis of 3 months' worth of data at low mass but FOUR TIMES better at high mass. (Final G1?)

(NOT preliminary. Analysis/limit is final. Text under internal review.)

LZ's Reach

- Turning on by 2020 with1,000 initial live-days plan
- 10 tons total, 7 tons active,5.6 ton fiducial mass
 - Due to unique triple veto
- GOALS: < 3 x 10⁻⁴⁸ cm², at 40 GeV. Clip v shoulder

*plot and models from LZ's Conceptual Design Report, arXiv:1509.02910

XENON1T

- Reduce background 100X from XENON100
 - Goal: 2 t-yr exposure
- Increase sensitivity by factor 100 compared to XENON100
 - 1.6 X 10⁻⁴⁷ cm² @ 50 GeV WIMP

- Located in LNGS
- Many systems upgraded from successful operation of XENON100
- 3.2 tons Xe (2.0 t active volume)
- Water Cherenkov muon veto
- Cyrogenics plant for high purity xenon (~10t)

TPC

- Largest DM detector ever built!
- Filled with LXe since April 2016
- 248 PMTs
- 96 cm drift X 96 cm diameter
- High reflectivity teflon walls

- TPC now operational!
- In conjunction with commissioning of remaining systems

Projected Sensitivity

- Only need 20 days to reach LUX/PandaX sensitivity!
- Commissioning nearly complete
- Operations of TPC and other systems already underway

- 2.0 X 10⁻⁴⁷ cm²
- @ 50 GeV WIMP
- 2 t-yr data

Upgrade: XENONnT

- Quick upgrade of TPC and inner cryostat
- All major systems remain unchanged
- Construct TPC in parallel to XENON1T operation
- Start data taking by 2019

DEAP-3600 Detector

3600 kg argon in sealed ultraclean Acrylic Vessel (1.7 m ID)

Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction

255 Hamamatsu R5912 HQE PMTs 8-inch (Light Sensors)

50 cm light guides + PE shielding provide neutron moderation

Scintillation light only – PSD for background discrimination

Máir Duulay

Pulse shape discrimination (PSD)

Prompt: 0-150ns Late: 150ns-10µs

<u>Single phase LAr:</u> scintillation channel is sufficient, no ionization channel

SNOLAB

Physics reach

- All available experimental data combined (LHC, LUX, Planck) are still consistent with even the simplest versions of SUSY (cMSSM, NUHM)
- Remaining parameter space is directly probed by direct WIMP searches with tonne scale detectors: DEAP-3600, XENON1T, LUX/LZ
- □Complementarity with LHC (cMSSM/NUHM are mostly out of reach of the 14 TeV run!)

 Mark Boulay

DEAP Acrylic Vessel with Light Guide "Stubs" July 2012, U Alberta

Ultrapure acrylic vessel, controlled exposure to radon

Bonding light guides to the DEAP AV, underground at SNOLAB

DEAP Acrylic Vessel (2013)

Mark Boulay

Moving the AV into temporary assembly room

Completed Detector and Shield Tank

Completed Detector: Steel Shell, calibration tubes, muon veto in Shield Tank (fall 2015)

Shield Tank and emergency vent lines, tank was filled with water Oct 2015, cooldown started Feb 2016

DEAP-3600 argon filling

Argon remains pure during filling, 3600 kg level within 1-2 weeks marks the start of the DM search running (1000 kg-days collected per day)

"Concept for future single phase":

Reaches ultimate DM sensitivity (limited by neutrino backgrounds)

Requires low-radioactivity argon (pioneered by DarkSide)

Planned R&D

- photodetector development, characterization
- background reduction
- engineering design and safety

From the US High Energy Physics Advisory Panel (HEPAP) – Particle Physics Project Prioritization Panel (P5) Strategic Plan (2014)

Dark Matter: Several experiments are needed using multiple target materials to search the available spin-independent and spin-dependent parameter space. This suite of experiments should have substantial cross-section reach, as well as the ability to confirm or refute current anomalous results.

Summary

Many experiments targeting low-mass and high-mass regions, several new ideas in low-mass region. Vibrant field with new ideas and developments, many new supporting and enabling techniques developed. Apologies for omissions, only a v. small fraction has been discussed here.

Large noble liquid detectors exploring high mass region, possibility of seeing "SUSY" from low-energy nuclear recoils underground.

Many exciting new results, including recent limits from LUX and PandaX-II! Expect new results from XENON-1T and DEAP-3600.

Many projects aiming for sensitivity near neutrino "floor" in the next 5-10 years. Important to develop experimental sensitivity with multiple targets and range of mass sensitivity.

Field has a healthy mix of projects, some with sensitivity right around the corner, some that that will take us into mid-2020s and beyond. Discovery can be anywhere along the way – should use the new measurements to guide the future program, and wherever possible ... collaborate!

END