Cosmic particles

Mariangela Settimo
Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE)
CNRS-IN2P3 & Institute Lagrange de Paris
Where particle physics is born

Victor Hess

Carl Anderson and a Wilson chamber

Bruno Rossi, the coincidence technique
An exciting field and a lot of ambitions

<table>
<thead>
<tr>
<th>In space (satellites, ISS,...)</th>
<th>At the South Pole</th>
<th>Under water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Array of detectors over huge surfaces up to thousands of km²
(Pierre Auger Observatory, Telescope Array)

Cherenkov Telescopes in Africa, Arizona, Canarie
A flux of particles over many energy decades

Nature is generous in energy but parsimonious in events
A flux of particles over many energy decades

Nature is generous in energy but parsimonious in events

- Origin and propagation of CRs
- Fundamental physics
 - Spectral features
 - Mass composition
 - Arrival directions

A single power-law

- Knee: $E \sim 10^{15}$ eV
- Ankle: $E \sim 10^{18.5}$ eV
- Cut-off: $E > 10^{19.5}$ eV

~ 1 particle per km2 per century

Tevatron, LHC (14 TeV)
A flux of particles over many energy decades

Nature is generous in energy but parsimonious in events

- Origin and propagation of CRs
- Fundamental physics
 - Spectral features
 - Mass composition
 - Arrival directions

What do we know?
What can we still learn?
Sources of cosmic rays

Galactic sources
Low energy up hundreds TeV

Extragalactic sources
High energies, above 10^{17}-10^{18} eV

Transition between galactic and extragalactic components
between $\sim 10^{17}$ - $10^{18.5}$ eV
Cosmic rays from our Galaxy

Measurements from balloons and satellite-borne experiments

Nature and origin
~ 98% are protons, helium
< 2% electrons, nuclei

Similar spectral index for all primaries, similar origin
What are we still looking for?
How do we do it?

Acceleration mechanism? Sources and propagation?
Non-astrophysical origin of cosmic rays?

Higher we go in energy less we know
How can we learn more?

Many detection technique and many experiments

Low energy (GeV - TeV):
- **direct detection (balloon, satellites)**

High energy (> tens of TeV):
- **indirect detection (ground-based exp.)**
Looking closer to our Galaxy

- Gamma-ray observations (satellites, ground-based Cherenkov)
- Flux of primary cosmic-rays, spallation products, isotopes and antiparticles

Evidence of a Pevatron in the Galactic center
Proton and helium spectra

With 30 months of AMS-02 data, the hardening of the proton and helium spectra is confirmed.

Proton

Helium

Propagation, re-acceleration, new sources?

A. Oliva for the AMS coll., parallel session
The electron/positron fluxes

Study of cosmic ray propagation (see also B/C ratio)
Rise in the e^+/e^- ratio observed by Pamela and AMS

Hints for Dark Matter or not-well modeled astrophysical origin?
Moving to very-high and ultra-high energies

Extensive-Air-Showers and Ground-based detectors
Ground-based detectors

using the atmosphere as a calorimeter

Fluorescence Telescopes

- Longitudinal shower development
- Calorimetric energy
- 10-15% duty cycle

Surface array detector

- Particle density at ground
- (hadronic interaction models)
- 100% duty cycle
The investigation tools

Not a lab experiment: a few inputs (mostly models) and observables to combine

From extensive air-showers:

- Evolution of the electromagnetic cascade
- Maximum of the shower (X_{\text{max}})
- Number of muons

Different detectors access to a different piece of information

Energy
Mass
hadronic signal
Two observatories for UHECRs

hybrid design and full sky coverage

Telescope Array
Millard County, Utah, USA, 1400 m a.s.l.

- 507 Scintillators (3 m² surface)
- 38 Fluorescence Telescopes

Pierre Auger Observatory
Malargüe, Argentina, 1400 m a.s.l.

- 1660 Water Cherenkov Detectors
- 27 Fluorescence Telescopes
The high-energy spectrum

V. Verzi, Cosmic Rays: Rapporteur talk, ICRC 2015

\[J(E) \times E^{2.5} \, [m^{-2} \cdot s^{-1} \cdot sr^{-1} \cdot eV^{1.5}] \]

- Knee
- 2nd Knee?
- Ankle
- Galactic
- Extragalactic
- Flux suppression
The end of the spectrum?

Galactic/Extragalactic transition? propagation?

E_{\text{max}} at the source? propagation (GZK)?

Ankle

Galactic
Extragalactic

$J(E) \times E^{2.5} \text{ [m}^{-2} \text{s}^{-1} \text{sr}^{-1} \text{eV}^{1.5}]$
The end of the spectrum?

1. Energy Spectrum
2. Mass composition
3. Anisotropy (astronomy for UHE protons!)
4. Cosmogenic photons and neutrinos
1. Energy spectrum above 10^{18} eV: some details

- **Ankle** position in good agreement
Are Northern and Southern skies different?

- **Ankle** position in good agreement
- **Flux suppression** at different energies (different skies?)

\[\log_{10}(E/\text{eV}) = a + b \cdot \log_{10}(E) \]

\[\text{Syst. on energy scale:} \]
- 14% for Auger, 21% for TA

\[\delta < 26^\circ: \log_{10}(E/\text{eV}) = 19.62 \pm 0.06 \]
\[\delta > 26^\circ: \log_{10}(E/\text{eV}) = 19.84 \pm 0.03 \]
2. Mass composition:

Change in composition and break point at $E \sim 10^{18.3}$ eV

Auger&TA joint work: TA uncertainties too large to distinguish between the Auger-mix and a light composition
3. Anisotropy at UHE ($E \gtrsim 55$ EeV)

No significant deviation from isotropy at small angular scale. Maximum significance at intermediate angular scales.

Telescope Array

Max significance: 5.1σ (pre-trial)
post-trial: 3.4σ
$E_{\text{thr}} > 57$ EeV, $\psi = 20^\circ$

($N_{\text{obs}} = 24$, $N_{\text{bg}} = 6.88$)

Pierre Auger Observatory

Largest excess: pre-trial 4.3σ, 69% post-trial probability)

$E_{\text{thr}} > 54$ EeV, $\psi = 12^\circ$
$N_{\text{obs}} = 14 / N_{\text{bg}} = 3.23$

J. Aublin for the Auger Coll., ICRC 2015

K.Kawata for the Telescope Array Collab., ICRC 2015
Test of air-shower models at UHE

From two Independent analyses using the signal in the Auger surface stations

Muon deficit in simulations from 30% to 80% at 10^{19} eV
What’s next?

TA extension to ~ 3000 km²

- Hot-spot at > 5 σ
- Statistics for mass composition and energy spectrum at highest energies

AugerPrime

- Muon content and mass composition
- Origin of the flux suppression
- Search proton flux (test astronomy for future detectors)
- Hadronic models and EAS physics

Scintillator, 3.8 m², 1 cm thick

Water Cherenkov Station

SDE
Still a lot to learn!

Very active field in all the energy ranges

- Many high-quality observations lead to precise measurements, unexpected results and open questions

- New experiments and upgrades taking data in the next years

A multi-messenger approach to constrain scenarios

The UHECRs a unique laboratory for astrophysics and for particle physics beyond LHC
Backup
Interpretation of results

Same X_{max} and $\sigma(X_{\text{max}})$ but different mixtures fit the X_{max} distribution with a N-components model.
Inferring the fraction of chemical components

Fit of the X_{max} distribution with simulation templates (4-components)

Are Auger and TA results in tension?

1) Construct a model of X_{max} distribution describing the Auger data

2) Pass the “Auger-like” composition through the TA simulation, reconstruction and analysis chain

Auger:
- 8 years
- hybrid (at least one surface detector station)
- 24 telescopes
- PRD 90 (2014) 12, 122005

TA:
- 5-year hybrid data sample
- hybrid (at least three surface detector station)
- Middle Drum telescopes (MD)
- APP 64 (2014) 49

M. Unger et al. for the Pierre Auger and Telescope Array Collaborations, ICRC 2015
The Scintillator Surface Detector

- S_μ from WCD and SSD signals
- $\sigma[S_\mu(800)] / \langle S_\mu(800) \rangle \sim 15\% \text{ (iron)} - 20\% \text{ (proton)}$
- resolution $X_{\text{max}} \sim 30 \, \text{g/cm}^2$

- faster sampling (120 MHz)
- enhanced trigger and monitor capabilities

$S_{\mu,\text{WCD}} = a S_{\text{WCD}} + b S_{\text{SSD}}$
The end of the galactic component?

The classical model (not the only possible interpretation)
Large Scale Anisotropy (E ≳ 10 EeV)

Joint analysis Auger and Telescope Array

O. Deligny, for the Pierre Auger and Telescope Array Collaborations, ICRC 2015

zenith range
[0-55°] for TA
[0-80°] for Auger

Energy threshold
~10^{19} eV

$$\omega(\mathbf{n} ; b) = \omega_{\text{TA}}(\mathbf{n}) + b \omega_{\text{Auger}}(\mathbf{n})$$

b: empirical factor absorbing systematics

Dipole amplitude: (6.5 ± 1.9)%
Direction: (93° ± 24°, -46° ± 18°)

The full sky coverage
Combined fit: spectrum and mass composition

Model: identical sources (uniformly distributed) accelerating p, He, N, Fe

Fit parameters: injection flux, spectral index, energy cut off, mass fractions

Best fit with very hard spectra ($\gamma \leq 1$)

Prevailing intermediate mass at the source
Astrophysical interpretation of the results

Combined fit of spectrum and mass composition

Fit of the mass assuming pure proton at source

Auger ICRC2015

best fit: \(\gamma = \frac{R_{\text{cut}}}{0.94^{+0.09}_{-0.10}} \times 10^{18.67\pm0.03} \)

Telescope Array ICRC2015

best fit: \(p = 2.21^{+0.10}_{-0.15}, \quad m = 6.7^{+1.7}_{-1.4} \)
UHE photons

✓ top-down models disfavored
✓ GZK flux region within reach
\(\nu \) selected as inclined showers with large em component (time spread of SD signals)

- Waxman-Bahcall landmark reached
- cosmogenic model with pure p composition at the source and strong FRII evolution disfavored

![Graph showing Neutrino single flavour limits (90% C.L.)](graph)

Cosmogenic \(\nu \) models
- \(p \), Fermi-LAT best-fit (Ahlers '10)
- \(p \), Fermi-LAT 99\% CL band (Ahlers '10)
- \(p \), FRII & SFR (Kampert '12)
- Fe, FRII & SFR (Kampert '12)
- \(p \) or mixed, SFR & GRB (Kotera '10)

Waxman-Bahcall '01

\(E^2 \, dN/dE \) [GeV cm\(^{-2}\) s\(^{-1}\) sr\(^{-1}\)]

\(E_\nu \) [eV]

\(10^{17} \) to \(10^{21} \)
IceCube Mass Composition + Systematics
Neutrino bounds on UHECRs sources

The IceCube collaboration, arXiv:1607.05886

Search for high energy neutrino-induced events with deposited energy from $> 10^6$ GeV to $> 10^{11}$ GeV.

2 events found at 7.7×10^5 GeV and 2.6×10^6 GeV. The hypothesis of cosmogenic origin is rejected at $> 99\%$ CL.

sources with $m = 3.5$, $z_{\text{max}} = 2$ disfavored!

i.e. sources of UHECRs must evolve more slowly than the SFR otherwise a proton-dominant composition is excluded.
AMS-02: A TeV Multi-purpose Spectrometer

Separates hadrons from leptons, matter from anti-matter and able to do CRs chemical and isotopic composition in GeV to TeV range.

Multiple and Independent Measurement of Charge (Z), Energy (β, p, E) and Charge Sign (±).
Some recent results from AMS-02

- At $E > 10$ GeV/n the B/C ratio measures the energy dependence of the escape path-length of CRs from the Galaxy
- Energy spectrum of particles injected by the source is different from observed spectrum

Need 10% precision @1 TeV/n to discriminate between break models (#1124 Kunz)
Mass composition measurements (Auger)

Depth of shower maximum (Xmax) proportional to the lnA.
Mass inferred from the first two moments of the Xmax distribution

Break-point @ E \sim 10^{18.3} \text{ eV}: Mass composition from intermediate to light primaries at low energy and to intermediate/heavy at high energy