ICHEP 2016, Chicago, Aug. 8, 2016

Discovery of Neutrino Oscillations

Takaaki Kajita Institute for Cosmic Ray Research, The Univ. of Tokyo

Outline

- Early days
 - Solar neutrinos
 - Atmospheric neutrinos
- Discovery of neutrino oscillations
 - Atmospheric neutrino oscillations
 - Solar neutrino oscillations
- Status and future
- Summary

Early days

Solar neutrinos

J. N. Bahcall

Pioneering Homestake solar neutrino experiment observed only about 1/3 of the predicted solar neutrinos (1960's).

Results from solar neutrino experiments (before ~2000)

Atmospheric neutrinos

Atmospheric v_{μ} deficit (1980's to 90's)

- \checkmark Proton decay experiments in the 1980's observed many atmospheric neutrino events.
- ✓ Because atmospheric neutrinos are the most serious background to the proton decay searches, it was necessary to understand atmospheric neutrino interactions.
- ✓ During these studies, a significant deficit of atmospheric v_{μ} events was observed.

Discovery of neutrino oscillations: - Atmospheric neutrino oscillations

Super-Kamiokande detector

Beginning of the Super-Kamiokande collaboration between Japan and USA

@ Institute forCosmic RayResearch, 1992

Constructing the Super-Kamiokande detector (spring 1995)

Filling water in Super-Kamiokande

Jan. 1996

Event type and neutrino energy

What will happen if the v_{μ} deficit is due to neutrino oscillations

Evidence for neutrino oscillations (Super-Kamiokande @Neutrino '98)

Discovery of neutrino oscillations: - Solar neutrino oscillations

SNO detector

1000 ton of heavy water

Unique signatures of heavy water (D₂O) experiments

Herbert Chen, PRL 55, 1534 (1985) "Direct Approach to Resolve the Solar-neutrino Problem"

A direct approach to resolve the solar-neutrino problem would be to observe neutrinos by use of both neutralcurrent and charged-current reactions. Then, the total neutrino flux and the electron-neutrino flux would be separately determined to provide independent tests of the neutrino-oscillation hypothesis and the standard solar model. A large heavy-water Cherenkov detector, sensitive to neutrinos from ⁸B decay via the neutralcurrent reaction $v+d \rightarrow v+p+n$ and the charged-current reaction $v_e + d \rightarrow e^- + p + p$, is suggested for this purpose.

SNO Collaboration Meeting, Chalk River, 1986

PROPOSAL TO BUILD A NEUTRINO OBSERVATORY IN SUDBURY, CANADA D. Sinclair, A.L. Carter, D. Kessler, E.D. Earle, P. Jagam, J.J. Simpson, R.C. Allen, H.H. Chen, P.J. Doe, E.D. Hallman, W.F. Davidson, A.B. McDonald, R.S. Storey, G.T. Ewan, H.-B. Mak, **B.C. Robertson II Nuovo Cimento** C9, 308 (1986)

Constructing the SNO detector

One million pieces transported down in the 3 m x 3 m x 4 m mine cage and re-assembled under ultra-clean conditions.

Filled with pure and heavy water in April 1999.

3 neutron detection methods (for vd \rightarrow vpn measurement)

Phase I (D₂O) Nov. 99 - May 01

n captures on ²H(n, γ)³H Eff. ~14.4%

Phase II (salt) July 01 - Sep. 03

2 tonnes of NaCl n captures on ³⁵Cl(n, γ)³⁶Cl Eff. ~40%

Phase III (³He) Nov. 04-Dec. 06 400 m of proportional counters ³He(n, p)³H Effc. ~ 30% capture

Evidence for solar neutrino oscillations

SNO results from 3 phases

Art McDonald

Status and future

Neutrino oscillation studies

<u>ν_μ</u> → v_τ oscillations (Δm₂₃, θ₂₃)
Atmospheric: Super-K, Soudan-2,
MACRO IceCube/Deepcore, ...
LBL: K2K, MINOS, OPERA, T2K, NOvA, ...

<u> $v_{\underline{e}}$ </u> → $(v_{\underline{\mu}}+v_{\underline{\tau}})$ oscillations ($\Delta m_{\underline{12}}, \theta_{\underline{12}}$) Solar: SNO, Super-K, Borexino, ... Reactor: KamLAND

$\underline{\theta}_{13}$ experiments

LBL: MINOS, T2K, NOvA, ...

Reactor: Daya Bay, Reno, Double Chooz

Status (before Neutrino 2016)

Parameter	best-fit $(\pm 1\sigma)$
$\Delta m_{21}^2 \ [10^{-5} \text{ eV}^2]$	$7.54_{-0.22}^{+0.26}$
$ \Delta m^2 \ [10^{-3} \text{ eV}^2]$	$2.43 \pm 0.06 \ (2.38 \pm 0.06)$
$\sin^2 \theta_{12}$	0.308 ± 0.017
$\sin^2\theta_{23},\Delta m^2 > 0$	$0.437_{-0.023}^{+0.033}$
$\sin^2\theta_{23},\Delta m^2 < 0$	$0.455_{-0.031}^{+0.039}$,
$\sin^2\theta_{13},\Delta m^2 > 0$	$0.0234_{-0.0019}^{+0.0020}$
$\sin^2\theta_{13},\Delta m^2 < 0$	$0.0240^{+0.0019}_{-0.0022}$
δ/π (2 σ range quoted)	$1.39_{-0.27}^{+0.38} \ (1.31_{-0.33}^{+0.29})$

K. Nakamura and S.T. Petcov, "14. Neutrino mass, mixing and oscillations"

Basic structure for 3 flavor oscillations has been understood!

Agenda for the future neutrino measurements

Neutrino mass hierarchy?

<u>CP violation?</u>

$$P(\nu_{\alpha} \to \nu_{\beta}) \neq P(\overline{\nu}_{\alpha} \to \overline{\nu}_{\beta}) ?$$

Baryon asymmetry of the Universe?

Absolute neutrino mass?

<u>Beyond the 3 flavor framework?</u> (Sterile neutrinos?)

Summary

- "Proton decay experiments" in the 1980's observed many contained atmospheric neutrino events, and discovered the atmospheric v_{μ} deficit. Subsequently, in 1998, Super-Kamiokande discovered neutrino oscillations.
- Solar neutrino experiments began in the 1960's. Various solar neutrino experiments before 2000 observed the deficit of solar neutrinos. Then the SNO experiment discovered solar neutrino oscillations by the measurements of CC and NC reactions of solar neutrinos.
- Since then, various experiments have studied neutrino oscillations.
- The discovery of non-zero neutrino masses opened a window to study physics beyond the Standard Model of particle physics. Neutrinos might also be the key to understand the baryon asymmetry of the Universe.

It is very important to learn the most from neutrinos!