

#### **LHC Accelerator Performance**

Mike Lamont for the LHC team

### Exit Run 1(2010 – 2012)

- Foundations well proven at 4 TeV
  - Magnets, vacuum, cryogenics, RF, powering, instrumentation, collimation, beam dumps etc.
- Huge amount of experience gained
  - Operations, optics, collimation...
- Healthy respect for machine protection





#### 2013 - 2015

April '13 to Sep. '14

The main 2013-14 LHC consolidations

The main 20

5<sup>th</sup> April



3<sup>rd</sup> June First Stable Beams



28<sup>th</sup> October Physics with record number of bunches Peak luminosity 5 x 10<sup>33</sup> cm<sup>-2</sup>s<sup>-1</sup>

2244

2244

13-14 | Aug 14-Apr 15

11,000 | 6-7 | 1-2 | 7-8 | 10,000 | 10 | 20 | 30 | 40 | 50

Dipole training campaign

10<sup>th</sup> April Beam at 6.5 TeV

2015



IONS



Pb-Pb at  $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 

## 2015: re-commissioning year, relaxed parameters, some issues...

#### **Electron cloud**

- Anticipated
- Significant head load to cryogenics



#### **UFOs**

- 8 UFO dumps within 2 weeks (Sep 20 to Oct 5)
- Conditioning observed



#### **Radiation to electronics**

- Mitigation measures (shielding, relocation...)
- Non-rad hard components used in LS1 upgrade



#### **LHC 2016**

# Choose a relatively bold set of operational parameters based on past experience

- Energy: 6.5 TeV
- 25 ns beam nominal bunch population (~1.2e11)
- Low emittance from injectors variations possible
- Squeeze harder in ATLAS and CMS
  - beta\* = 40 cm
  - cf. 80 cm in 2015, 55 cm design

$$\mathcal{L} \propto rac{1}{eta^*}$$

# Squeeze in ATLAS/CMS

- Lower beta\* implies larger beams in the triplet magnets
- Larger beams implies a larger crossing angle
- Aperture concerns dictate caution experience counts



#### Overcome a few problems





#### **SPS BEAM DUMP**

- Limited to 96 bunches per injection
- 2076 bunches per beam cf. 2750



### **Peak luminosity**



LHCb and ALICE: levelled operation at ~3x10<sup>32</sup> and ~2x10<sup>30</sup> cm<sup>-2</sup>s<sup>-1</sup> respectively

## **Design luminosity reached**





Reduced beta\* and lower transverse beam sizes from the injectors compensating the lower number of bunches



# **Luminosity lifetime**



Excellent luminosity lifetime – main component - proton loss to inelastic collisions in ATLAS, CMS and LHCb

#### Then enjoy some remarkable availability



# Availability: 11<sup>th</sup> June – 23<sup>rd</sup>



# **Integrated luminosity**



# 2016 No one is more surprised than we are

- Good peak luminosity, excellent luminosity lifetime
- Stunning availability
  - Sustained effort from hardware groups
- Few premature dumps long fills
  - UFO rate down, radiation to electronics mitigated



#### Stored energy per beam



#### **Machine status - summary**

- Excellent and improved system performance
- Good beam lifetime through the cycle
- Operationally things well under control
- Magnetically reproducible as ever
- Optically good, corrected to excellent
- Aperture is fine and compatible with the collimation hierarchy.
- Magnets behaving well at 6.5 TeV

## **Incoming 2016**

|    | July |    |    |                      | Aug |    |    |                      | Sep |         |     |                    |    |
|----|------|----|----|----------------------|-----|----|----|----------------------|-----|---------|-----|--------------------|----|
| Wk | 27   | 28 | 29 | 30                   | 31  | 32 | 33 | 34                   | 35  | 36      | 37  | 38                 | 39 |
| Мо | 4    | 11 | 18 | 25                   | 1   | 8  | 15 | 22                   | 29  | 5       | 12  | - W 8              | 26 |
| Tu |      |    |    |                      |     |    |    | MD 2                 |     |         |     | : 2.5 kn<br>taking |    |
| We |      |    |    |                      |     |    |    |                      |     |         | TS2 | beta* =            |    |
| Th |      |    |    | MD 1                 |     |    |    |                      |     | Jeune G |     | ğ                  |    |
| Fr |      |    |    |                      |     |    |    | beta* 2.5 km<br>dev. |     |         |     |                    |    |
| Sa |      |    |    |                      |     |    |    |                      |     | MD3     |     |                    |    |
| Su |      |    |    | beta* 2.5 km<br>dev. |     |    |    |                      |     | 11103   |     |                    |    |

|    | Oct  |    | Nov |    |      |     |       |    | End of run [06:00]  Dec |       |          |            |          |
|----|------|----|-----|----|------|-----|-------|----|-------------------------|-------|----------|------------|----------|
| Wk | 40   | 41 | 42  | 43 | 44   | 45  | 46    | 47 | 48                      | 49    | 50       | 51         | 52       |
| Мо | 3    | 10 | 17  | 24 | 31   | 7   | 14    | 21 | 28                      | 5     | <b>¥</b> | 19         | 26       |
| Tu | MD 4 |    |     |    |      |     | lons  |    |                         |       | Extended |            |          |
| We |      |    |     |    |      | TS3 | setup |    |                         |       | technic  | al stop    |          |
| Th |      |    |     |    |      |     |       |    | on run                  |       |          | Lab closed |          |
| Fr |      |    |     |    | MD 5 |     |       |    | (p-Pb)                  |       |          |            |          |
| Sa |      |    |     |    |      |     |       |    |                         |       |          |            |          |
| Su |      |    | ·   |    |      |     |       |    |                         | Pb MD |          | Xmas       | New Year |

- ~9 weeks of proton physics left...
- Proton-lead run at Vs<sub>NN</sub> of 5 and 8 TeV

#### Run 2



- Peak luminosity limited to ~1.7e34 by inner triplets
- ~40 fb<sup>-1</sup>/year in 2017 and 2018
- Prepare for HL-LHC and post-LS2 LIU era
- Prepare for 7 TeV operation

## Conclusions (1/2)

- Excellent peak performance
  - Design luminosity (squeeze, beams from injectors)
  - Still margin for improvement in Run 2
- Good integrated delivery
  - Remarkable availability
  - Electron cloud conditioning slowly
  - Fortunate that UFOs have conditioned down

# Conclusions 2/2

- Moved from commissioning to exploitation
- LHC is enjoying the benefits of the decades long international design, construction, installation effort – foundations are good
- Huge amount of experience & understanding gained and fed-forward
- Progress represents a phenomenal ongoing effort by all the teams involved.



#### **BACKUP**

#### **UFOs: Run 2 so far**



- arc UFOs (cell >11): rates similar to end of 2015
  - did not lose conditioning over the Xmas stop

### **Beam from injectors**

Lower than nominal emittance taken a step further



# Dipole training 2/2

Training: frictional energy released during conductor motion



#### Campaign summary

| •                                                                                                      | <u> </u>        |         |             |        |             |            |            |           |           |  |  |
|--------------------------------------------------------------------------------------------------------|-----------------|---------|-------------|--------|-------------|------------|------------|-----------|-----------|--|--|
| Training quenches during HWC 2014-2015 occurring until I_PNO+100 A has been reached for the first time |                 |         |             |        |             |            |            |           |           |  |  |
| Circuit                                                                                                | Status          | #M Firm | 1#M Firm 2# | M Firm | 3#MQ Firm 1 | #MQ Firm 2 | #MQ Firm 3 | #MQ total | #CQ total |  |  |
| RB.A12                                                                                                 | 11080 A reached | 50      | 95          | 9      | 2           | 1          | 4          | 7         | 7         |  |  |
| RB.A23                                                                                                 | 11080 A reached | 56      | 58          | 40     | 0           | 1          | 15         | 16        | 16        |  |  |
| RB.A34                                                                                                 | 11080 A reached | 44      | 81          | 29     | 1           | 5          | 8          | 14        | 14        |  |  |
| RB.A45                                                                                                 | 11080 A reached | 48      | 44          | 62     | 0           | 3          | 48         | 51        | 49        |  |  |
| RB.A56                                                                                                 | 11080 A reached | 28      | 42          | 84     | 0           | 0          | 15         | 15        | 14        |  |  |
| RB.A67                                                                                                 | 11080 A reached | 57      | 36          | 61     | 0           | 1          | 20         | 21        | 20        |  |  |
| RB.A78                                                                                                 | 11080 A reached | 53      | 40          | 61     | 2           | 8          | 6          | 16        | 16        |  |  |
| RB.A81                                                                                                 | 11080 A reached | 64      | 24          | 66     | 0           | 3          | 26         | 29        | 26        |  |  |
|                                                                                                        | Total:          | 400     | 420         | 412    | 5           | 22         | 142        | 169       | 162       |  |  |

#M: Number of magnets in a sector.

#MQ: Number of magnet training quenches in a sector.

#CQ: Number of circuit quenches in a sector.

- All magnets have been trained to well over 7 TeV in SM18 before installation
- Extensive re-training in situ was not expected