Highlights from the LHC (I)

Selected results from ATLAS and LHCb

38th ICHEP, Chicago, USA
8 August 2016

Dave Charlton
University of Birmingham
On behalf of ATLAS and LHCb

For more details, see the plenary talks:

- Higgs Measurements - Florencia Canelli
- Top and Electroweak Measurements - Ulla Blumenschein
- Searches for SUSY - Wolfgang Adam
- Exotica Searches - Shih-Chieh Hsu
- Results and Prospects on Bottom Physics - Vincenzo Vagnoni
- Hadron Physics Overview - Beijiang Liu
- Strong Interactions Expt Overview - Halina Abramowicz

...and the many many parallel talks and posters
LHCb in Run-2

New trigger architecture:
• Part of high-level trigger runs asynchronously from disk buffers after automated calibration and alignment → high quality physics data off the detector

New Run-2 subdetector:
• “Herschel” scintillators along the beam directions up to 114m away from IP

LHCb data samples: 3 fb⁻¹ in Run-1 (7+8 TeV), so far ~1.2 fb⁻¹ in Run-2 (13 TeV)
ATLAS in Run-2

New detectors in Run-2:
- Innermost pixel layer IBL, 3.4cm from interaction point
- Forward proton detectors (one arm in 2016, 210m from IP)

In addition, various consolidations provide improved running at high luminosities and rates
Data Samples

Exceptional LHC performance in 2016 following 13 TeV commissioning in 2015
(2015: 4.2 fb\(^{-1}\) delivered, 3.9 fb\(^{-1}\) collected)

Results reported with 3-15 fb\(^{-1}\)

Data Samples

Luminosity uncertainty
\[\pm 2.1\% \ (2015) \]
\[\pm 3.7\% \ (2016, \text{preliminary}) \]
\[\pm 2.9\% \ (2015+2016, \text{prel}) \]

Data quality in 2016:
- >90% of data collected usable for analysis
After a little more than a year the ATLAS/CMS Run-2 pp sample is approaching the integrated luminosity of Run-1, at 1.6 times higher √s.

Major new-physics sensitivity has opened up.
The Trigger Challenge

Complex trigger menu designed to meet varied physics, monitoring and performance requirements

- Typically ~2000 active menu items
- Stable main primary triggers
- Level-1 running at ~85 kHz
- Average physics output rate ~1kHz

A few, example, trigger thresholds (GeV)

- $E_T(e) > 24-26$
- $p_T(\mu) > 24-26$
- $E_T^{\text{miss}} > 90-110$
- $E_T(\text{jet}) > 380$
- $E_T(\gamma) > 140$
- $p_T(\mu_1, \mu_2) > 6,6 + \text{topo/mass selections}$
- $E_T(\gamma_1, \gamma_2) > 35,25$

ATLAS Preliminary
Data 2016, $\sqrt{s} = 13$ TeV, 2.7 fb$^{-1}$

Single electron trigger

26 GeV E_T threshold

ATLAS Preliminary
Data 2016, $\sqrt{s} = 13$ TeV, 127 pb$^{-1}$

Single muon trigger

24 GeV p_T threshold
Many measurements from Run-1 and Run-2

Important steps forward in physics modelling in the last years:
- NLO event generators - now standard
- (N)NNLO calculations increasingly available

These help face the challenge of the precision of the LHC data

Measure complex topologies: bench-test Monte Carlo models of backgrounds to new physics searches, which are pushing into increasingly intricate event signatures
LHCb has measured the cross-section for the process $pp \rightarrow b\bar{b}X$ at both 7 and 13 TeV centre-of-mass energies, in the pseudorapidity range $2 < \eta < 5$

- The measurement is made using semileptonic decays of b-hadrons

The ratio of 13 to 7 TeV cross-sections appears to depart from FONLL theory predictions at low η

- Calls for further theoretical progress
Z+Jets

Access and measure high jet multiplicities in 13 TeV data
- Test NLO generators on easily triggered events with high jet multiplicities
- Vector-boson plus jet events are a major background in searches

Fully corrected fiducial and differential cross-sections
- Z with up to 7 additional jets measured

Jet multiplicity: main NLO generators do a good job, at least up to 6 jets

Leading jet p_T spectra:
- LO generators over-predict high-p_T tail
- NLO generators provide better description

~6M $Z\rightarrow\ell\ell$ event sample (3.2 fb$^{-1}$)
Run-1 puzzle to describe inclusive diboson cross-sections

- Measurements tended to lie above NLO calculations
- NNLO calculations → ~20% corrections and better agreement

Presented measurements at 13 TeV of WW, WZ, ZZ leptonic channels

Example:

WZ leptonic decays

NNLO calculations describe data much better than NLO
Single and double b-tagged $t\bar{t} \rightarrow b\bar{b}e\nu\mu\nu$ events allow to measure $t\bar{t}$ cross-section and b-tagging efficiency simultaneously.

Precision $\pm(3.9-4.4)\%$ (7-13 TeV) betters NNLO+NNLL predictions (~5%).

High $t\bar{t}$ statistics \rightarrow detailed studies of production properties.
CP violation and rare processes help identify new symmetries (and their breaking) and probe high scales through virtual effects.
CP Violation at LHCb - Λ_b Decays

In the flavour sector, LHCb has a wealth of measurements, and is probing CP violation in new processes

First evidence for CP violation in $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$
- Searching for local CP-violating effects in $\Lambda_b \rightarrow p\pi^-\pi^+\pi^-$ decays as a function of the relative orientation between the decay planes formed by the $p\pi^-$ and $\pi^+\pi^-$ systems (Φ)

- Evidence is found for CP violation at the 3.3σ level

First evidence of CP violation in the baryon sector

LHCb-PAPER-2016-030 in preparation
Search for CP Violation in Charm Decays

CP violation in the charm sector is expected to be very small in the SM, but can be enhanced by new physics

- Most precise measurement of $A_{CP}(D^0 \rightarrow K^+K^-)$

$$\frac{N(D^0 \rightarrow f) - N(\bar{D}^0 \rightarrow \bar{f})}{N(D^0 \rightarrow f) + N(\bar{D}^0 \rightarrow \bar{f})}$$

with $f=K^+K^-$

Experimental and production nuisance effects need to be pinned down

- Flavour of D^0 is tagged using the π^\pm charge from $D^{*+}\rightarrow D^0(K^+K^-)\pi^+$ decays

$$A_{CP}(K^-K^+) = (0.14 \pm 0.15 \text{ (stat)} \pm 0.10 \text{ (syst)})\%$$

Combining this with a previous LHCb result using muon charge in semileptonic $B \rightarrow D\mu X$ decays as a tag, the most precise CP violation measurement from a charm meson decay from an individual experiment is obtained:

$$A_{CP}(K^-K^+) = (0.04 \pm 0.12 \text{ (stat)} \pm 0.10 \text{ (syst)})\%$$

LHCb-PAPER-2016-035 in preparation
Elucidating the H(125)

H discovery opened the door on the scalar sector

In Run-1 we measured:

- Its spin-parity, and its mass precisely \((\pm 0.2\%)\)
- Production via gluon-fusion, vector-boson fusion, and with a W or Z
- The decays to \(\gamma\gamma\), \(WW\), \(ZZ\), and the fermionic decay to \(\tau\tau\)

Run-2 priorities:

- Establish and measure at 13 TeV
- Search for \(ttH\) production to probe \(ttH\) vertex directly
- Search for \(H \rightarrow bb\) decays
- Search for rare decays
- Refine measurements of couplings, mass, etc
- Expand use of H as a tool to find new physics
Event categories enhance sensitivity and help separate production modes
- Clear signal, rate consistent with SM H expectation
- Fiducial and differential cross-section measurements

\[\sigma_{\text{fid}} = 47.0 \pm 13.9 \text{ (stat.)} \pm 5.4 \text{ (syst.) fb} \]

SM prediction \(62.8^{+3.4}_{-4.4} \text{ fb} \)

\[m_H = 125.09 \text{ GeV} \]

\[\sqrt{s} = 13 \text{ TeV}, 13.3 \text{ fb}^{-1} \]
H→4ℓ & Cross-Section Combination

H→ZZ*→4ℓ: event categories again used
- Clear re-observation, rate consistent with SM H expectation (1.6σ high)

Combining γγ+4ℓ channels

σ(pp→H+X, 13 TeV) = \(59.0^{+9.7}_{-9.2}\) (stat.) +4.4\(^{-3.5}\) (syst.) pb

SM prediction 55.5\(^{+2.4}_{-3.4}\) pb

Overall significance at 13 TeV ~10σ
Search for ttH production

Direct probe of top Yukawa coupling
Cross-section at 13 TeV ~4 times that at 8 TeV
Results presented with 2015+2016 data for
- $ttH, H \rightarrow bb$
- ttH, multilepton final states (contributions from several decay chains)
- $ttH, H \rightarrow \gamma\gamma$ through $H \rightarrow \gamma\gamma$ event categorisation

$ttH, H \rightarrow bb$ analysis

Complex final states
- $1\ell + 6\text{jets (4 b-jets)}$
- $2\ell + 4\text{jets (4 b-jets)}$
Multiple selection regions help to constrain $tt+HF$ production and systematic uncertainties

Plot shows events from 16 selection categories, with events ordered in signal/bkgd ratio
Search for ttH production

Direct probe of top Yukawa coupling
Cross-section at 13 TeV ~4 times that at 8 TeV
Results presented with 2015+2016 data for
• ttH, H→bb
• ttH, multilepton final states (contributions from several decay chains)
• ttH, H→γγ through H→γγ event categorisation

ttH multilepton analysis

Primarily targets
• H→WW*, H→ττ
Multiple selection regions according to ℓ and τ multiplicities

Dominant backgrounds from tt(W/Z) and non-prompt leptons/fakes
Event selected in ttH multilepton analysis
Search for ttH production

Direct probe of top Yukawa coupling
Cross-section at 13 TeV ~4 times that at 8 TeV
Results presented with 2015+2016 data for
- ttH, $H \rightarrow bb$
- ttH, multilepton final states (contributions from several decay chains)
- ttH, $H \rightarrow \gamma\gamma$ through $H \rightarrow \gamma\gamma$ event categorisation

ttH combination

Combine all three 13 TeV analyses

Signal strength μ expressed relative to SM expectation

Observed significance
2.8σ (expect 1.8σ)
Cf Run-1 expected 1.5σ

Upper limit on signal strength: $\mu_{ttH} < 3.0$ at 95%CL (expected $\mu_{ttH} < 2.1$ for SM case)
Run-1: H→bb “evidence” at 2.6σ (3.7σ expected), combining ATLAS+CMS Run-1
- Dominant H decay mode (BR~58%) remains to be observed!

Analysis with 2015+2016 13 TeV data:
- 2ℓ(Z→ℓℓ), 1ℓ(W→ℓν), 0ℓ(Z→νν) channels
- VZ, Z→bb validation: 3.0σ, expect 3.2σ

Significance 0.42σ cf. expected 1.94σ
Can convert to upper limit on signal strength: μ < 1.2 at 95%CL
Major extension of reach compared to Run-1

All results shown here include 2016 data

They probe well into the TeV, even multi-TeV, mass scale range

Many more searches will yet come with the 2016 dataset
Dijet Search

Search for new physics in dijet mass spectrum and angular distributions

ATLAS Preliminary
\(\sqrt{s} = 13 \text{ TeV}, 15.7 \text{ fb}^{-1} \)

- Data
- Background fit
- BumpHunter interval
- \(q^*, m_{q^*} = 4.0 \text{ TeV} \)
- \(q^*, m_{q^*} = 5.0 \text{ TeV} \)

2015+2016

2015+2016

Examples (@95% CL):
- \(m(q^*) > 5.6 \text{ TeV} \)
 (ATLAS Run-1: 4.1 TeV)

- Contact interaction scale \((\eta_{LL} = +1/-1)\)
 \(\Lambda > 12.6 / 19.9 \text{ TeV} \) (8.1/12.0 TeV)
Dilepton Resonance Searches

\[m(e^+, e^-) \] Dielectron Invariant Mass [GeV]

\[m_{\ell\ell}^{T}(\mu, E_T^{\text{miss}}) \] Transverse mass [GeV]

\[Z'_{\text{SSM}} (@95\%CL): m > 4.05 \text{ TeV} \]
(Run-1 \(m > 2.90 \text{ TeV} \))

\[W' (@95\%CL): m > 4.74 \text{ TeV} \]
(Run-1 \(m > 3.24 \text{ TeV} \))
Diphoton Searches

Localised excess seen in 2015 ATLAS data
- 2.1σ global (3.9σ local) significance at 750 GeV (spin-0 search), width ~50 GeV
- After reprocessing, new 2016 reconstruction → 3.4σ local, at ~730 GeV

2016 data: no clustering around 730-750 GeV, and 3.8x more data
- 2016 data consistent with 2015 at the 2.7σ level
- Appears that the 2015 excess was a statistical fluctuation
Localised excess seen in 2015 ATLAS data

- 2.1\sigma global (3.9\sigma local) significance at 750 GeV (spin-0 search), width ~50 GeV
- After reprocessing, new 2016 reconstruction: 3.4\sigma local, at ~730 GeV
- 2016 data: no clustering around 730-750 GeV, and 3.8x more data
- 2015 and 2016 consistent at the 2.7\sigma level
- Appears that the 2015 excess was a statistical fluctuation

With 2015+2016 data:
- Small excess at 710 GeV (\Gamma/m \sim 10%)
- Local significance 1.4\sigma, global <1\sigma
SUSY Searches

Very broad set of SUSY search results reported with 2015+2016 data

Just a couple of examples here:
- g/q search with jets+E_T^{miss}
- t searches

Standard ATLAS approach in many searches:
- Focus on specific signatures, simplified models guide optimisation
- Data-driven backgrounds: multiple control regions to constrain MC predictions and systematic uncertainties
- Validation regions: verify background descriptions
- Signal regions: sensitivity!
Total of 30 signal regions:
- 13 shown with different m_{eff} cuts
- Largest excess 1.6σ
- No significant excesses overall

$$m_{\text{eff}} = E_T^{\text{miss}} + \sum |p_T(\text{jet})|$$

Require 2-6 jets and veto isolated leptons
- Sensitive to \tilde{g} and \tilde{q} production
Main backgrounds Z/W+jets and $t\bar{t}$
Total of 30 signal regions:
- 13 shown with different m_{eff} cuts
- Largest excess 1.6σ
- No significant excesses overall

$$m_{\text{eff}} = E_T^{\text{miss}} + \sum |p_T(\text{jet})|$$

Require 2-6 jets and veto isolated leptons
- Sensitive to g and q production
Main backgrounds $Z/W+\text{jets}$ and $t\bar{t}$
Total of 30 signal regions:
- 13 shown with different m_{eff} cuts
- Largest excess 1.6σ
- No significant excesses overall

$m_{\text{eff}} = E_T^{\text{miss}} + \sum |p_T(\text{jet})|$
Stop Search: $\tilde{t} \rightarrow bW\chi_1^0$, $\tilde{t} \rightarrow t\chi_1^0$

Event topology: $WbWb+E_T^{\text{miss}}(+\text{jets})$
- Divide according to W decays: 0ℓ, 1ℓ, 2ℓ, τ

In total, 35 signal regions
- Aiming to cover $m(\chi_1^0)$ vs $m(\tilde{t})$ plane
- Largest excess 3.3σ

In total, 35 signal regions
- Aiming to cover $m(\chi_1^0)$ vs $m(\tilde{t})$ plane
- Largest excess 3.3σ
Stop Search: $\tilde{t} \rightarrow bW\chi_1^0$, $\tilde{t} \rightarrow t\chi_1^0$

Event topology: $WbWb^+$
- Divide according to W decays: 0ℓ, 1ℓ, 2ℓ, τ
- In total, 35 signal regions
- Aiming to cover $m(\chi_1^0)$ vs $m(t)$ plane
- Largest excess 3.3σ

Caution: different decay modes overlaid

Validation regions

ATLAS Preliminary
- $\tilde{t}s=13$ TeV, 13.2 fb$^{-1}$
- $\tilde{t}s=8$ TeV, 20 fb$^{-1}$
- Run-1 (2015 only)

Status: ICHEP 2016

Run-1 [1506.08616]
Stop Search: $\tilde{t} \rightarrow bW\chi_1^0$, $\tilde{t} \rightarrow t\chi_1^0$

Event topology: $WbWb^+$
- Divide according to W decays: 0ℓ, 1ℓ, 2ℓ, τ

In total, 35 signal regions
- Aiming to cover $m(\chi_1^0)$ vs $m(t)$ plane
- Largest excess 3.3σ

Caution: different decay modes overlaid

For $m(\chi_1^0) < 200$ GeV, $m(\tilde{t}) < 800$ GeV excluded except in rather small regions
Massive Diboson Searches

Search for resonant di-boson production
- Boosted ("fat jet") selections vital at high-p_T
- Explored many channels with 2016 data

In-situ validation of performance:
Preselected fat jets with $p_T(J) > 500$ GeV
Massive Diboson Searches

Search for resonant di-boson production
- Boosted ("fat jet") selections vital at high-p_T
- Explored many channels with 2016 data

In-situ validation of performance:
Preselected fat jets with $p_T(J)>500$ GeV
Massive Diboson Searches

In-situ validation of performance:
Preselected fat jets with $p_T(J)>500$ GeV

Search for resonant di-boson production
- Boosted ("fat jet") selections vital at high-p_T
- Explored many channels with 2016 data

Overlaying limits from all WZ searches - no persistent excesses

ATLAS Preliminary
$\sqrt{s} = 13$ TeV, 13.2-15.5 fb$^{-1}$
$2015+2016$

95% C.L. exclusion limits

Overlaying limits from all WZ searches - no persistent excesses
In total 64 new results prepared for ICHEP, 56 using 13 TeV data and 45 with 2015+2016 ATLAS has now submitted 40 papers with Run-2 data (576 total with collision data) The flood-tide of Run-1 results has not yet ebbed
Summary

LHC Run-2 is storming ahead!

Enhanced detectors and trigger systems working very well
- ATLAS coping well with pileup levels approaching twice design
- LHCb revised trigger system provides high-quality data very fast

Wealth of measurements already from 13 TeV data
- Simple and complex final-states
- Inclusive cross-sections to multi-boson, top, b-physics
- New probes of CP violation from LHCb
- Starting precise measurements of H(125) at 13 TeV
- Closing in on Standard Model ttH sensitivity

Exploring the 2016 data in many topologies
- Many complex searches with multiple signal regions probed
- No significant excesses, though some ~2-3σ effects ~ as expected
- More data will tell which, if any, will remain

Huge thanks to the LHC and injector teams who are delivering this extraordinary 2016 data sample
Huge thanks to the LHC and Injector teams who are delivering this extraordinary 2016 data sample
Bonus
Improvements to LHCb in Run-2

- Radical changes to software trigger strategy
 - splitting the HLT into HLT1 and HLT2 steps
- HLT1 runs synchronously with data taking and performs a first looser selection
 - Events are then stored onto the local disks of the online computing farm (10 PB disk buffer)
- Automatic online calibration and alignment are performed and more selective HLT2 step is (mostly) run asynchronously in interfill/MD/TS periods
 - The new scheme leads to take high-quality data directly from the trigger output
- A further novelty is the Turbo trigger stream
 - Writes out a compact summary of “physics” objects containing all information necessary for analyses
 - Allows for an increased output rate and thus higher trigger efficiencies

- New “Herschel” subdetector
 - System of forward shower counters (5 stations) located in the LHC tunnel up to maximum distance of ~114m in either side of the luminous region
 - Extends the rapidity coverage of the LHCb experiment in the high rapidity regions
 - Crucial for studies of diffractive physics and central exclusive production
Cross-section Increase $8\rightarrow13$ TeV

- Minimum bias: 1.2
- W(\ln): 1.6
- Z(\ell\ell): 1.7
- ZZ: 2.0
- t (s-channel): 2.2
- t (t-channel): 2.5
- WH: 2.0
- H (ggF): 2.3
- H (VBF): 2.4
- tt: 3.3
- ttZ: 3.6
- ttH: 3.9
- A(0.5 TeV, ggF+bbA): 4.0
- stop pair (0.7 TeV): 8.4
- gluino pair (1.5 TeV): 46
- Z' SSM (3 TeV): 10
- Q' (4 TeV): 56
- QBH (5 TeV): 370
- QBH (6 TeV): 9000

$\sigma(13 \text{ TeV}) / \sigma(8 \text{ TeV})$
More than Nominal Luminosity

Many challenges
- Detectors (occupancies, SEUs …)
- Trigger (thresholds, rates)
- Readout (bandwidth)
- Offline (Tier-0, Grid)

ATLAS has risen to meet these challenges!

LHC design: \(L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \)
Achieved: \(L = 1.2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1} \)

Pileup often above LHC design in 2016
Data Quality

Detector operational channel fractions remain at Run-1 levels

Data quality good, with occasional short toroid-off periods (power glitches)

ATLAS pp 25ns run: April-July 2016

<table>
<thead>
<tr>
<th>Inner Tracker</th>
<th>Calorimeters</th>
<th>Muon Spectrometer</th>
<th>Magnets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel</td>
<td>SCT</td>
<td>TRT LAr Tile</td>
<td>MDT RPC CSC TGC Solenoid Toroid</td>
</tr>
<tr>
<td>98.9</td>
<td>99.9</td>
<td>100</td>
<td>99.8 99.8 99.8 99.8 99.7 93.5</td>
</tr>
</tbody>
</table>

Good for physics: 91-98% (10.1-10.7 fb⁻¹)

Luminosity weighted relative detector uptime and good data quality efficiencies (in %) during stable beam in pp collisions with 25ns bunch spacing at √s=13 TeV between 28th April and 10th July 2016, corresponding to an integrated luminosity of 11.0 fb⁻¹. The toroid magnet was off for some runs, leading to a loss of 0.7 fb⁻¹. Analyses that don’t require the toroid magnet can use that data.
Inclusive Cross-Sections

Standard Model Production Cross Section Measurements

ATLAS Preliminary
Run 1,2 $\sqrt{s} = 7, 8, 13$ TeV

Status: August 2016

<table>
<thead>
<tr>
<th>LHC pp $\sqrt{s} = 7$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data $4.5 - 4.9$ fb$^{-1}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LHC pp $\sqrt{s} = 8$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data 20.3 fb$^{-1}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LHC pp $\sqrt{s} = 13$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data $0.08 - 14.8$ fb$^{-1}$</td>
</tr>
</tbody>
</table>

D Charlton / Birmingham - 8 August 2016, ICHEP Chicago
Massive Diboson Production

Run-1 puzzle to describe inclusive diboson cross-sections
- Measurements tended to lie above NLO calculations

NNLO calculations \rightarrow \sim20% corrections and better agreement

Presented measurements at 13 TeV of WW, WZ, ZZ leptonic channels

One example: $WZ \rightarrow \ell\nu\ell\ell$

(inclusive, differential cross-section measurements, triple gauge coupling limits)

Cross-section differential in $p_T(Z)$

NNLO calculations describe data much better than NLO

7% precision
Dark Matter Searches

Range of searches for weakly-interacting dark matter production in association with other identified particles, including SUSY-search derived analyses.

- \(Z \rightarrow \ell \ell \) + \(E_T^{\text{miss}} \) analysis sensitive to:
 - \(Z + \text{DM} \) production
 - \(ZH \) production with \(H \rightarrow \text{invisibles} \)
 - Resonant \(ZZ \rightarrow \ell \ell \nu \nu \)

Main SM background \(ZZ \rightarrow \ell \ell \nu \nu \)

\[Z \rightarrow \ell \ell \] preselection probes \(E_T^{\text{miss}} \) description

2015+2016

DM constraints placed in vector mediator model from arXiv: 1507.00966
SUSY Summary (selection)

ATLAS SUSY Searches - 95% CL Lower Limits

Status: August 2016

| Model | $\epsilon, \mu, \tau, \gamma, \text{Jets} | E_{\text{miss}}^T | \left| L \Delta t(\text{fb}^{-1}) \right| | Mass limit | $\sqrt{s} = 7, 8, 13 \text{ TeV}$ | Reference |
|-------|---------------------------------|-----------------|-----------------------------------|-------------|-----------------|-----------|
| **Inclusive Searches** | | | | | | |
| **MSUGRA/CMSSM** | | | | | | |
| 0-3 e, μ, τ | 2 - 10 jets/3 b | Yes | 20.3 | 1.85 TeV | $m_{\chi^0} = 60$ GeV | 1507.06525 |
| θ_3 | mono-jet | Yes | 3.2 | 1.35 TeV | $m_{\chi^0} = 200$ GeV, $m_{\chi^0} = 0.6 \text{ TeV}$ | ATLAS-CONF-2016-076 |
| **SUSY Summary (selection)** | | | | | | |
| **Gravitino LSP** | | | | | | |
| 0 | mono-jet | Yes | 20.3 | 1.35 TeV | $m_{\chi^0} = 60$ GeV | 1507.06525 |
| 0 | | | | | | |
| **3rd gen. squarks** | | | | | | |
| $h_{3/1}$ | 2 | 0 | Yes | 2.1 | 1.9 TeV | $m_{\chi^0} = 60$ GeV | 1407.0651 |
| $h_{3/1}$ | mono-jet | Yes | 3.2 | 1.35 TeV | $m_{\chi^0} = 300$ GeV | ATLAS-CONF-2016-062 |
| 0 | | | | | | |
| **4th gen. squarks** | | | | | | |
| $h_{4/1}$ | 2 | 0 | Yes | 2.1 | 1.9 TeV | $m_{\chi^0} = 60$ GeV | 1407.0651 |
| $h_{4/1}$ | mono-jet | Yes | 3.2 | 1.35 TeV | $m_{\chi^0} = 300$ GeV | ATLAS-CONF-2016-062 |
| 0 | | | | | | |
| **EW direct** | | | | | | |
| $\tilde{e}_L^* \tilde{e}_R^*$ | 2-3 | 0 | Yes | 20.3 | 1.35 TeV | $m_{\chi^0} = 100$ GeV | 1506.06816 |
| $\tilde{\tau}_L^* \tilde{\tau}_R^*$ | 0 | | | | | |
| **Long-lived particles** | | | | | | |
| $\tilde{e}_L^*, \tilde{e}_R^*, \tilde{\tau}_L^*, \tilde{\tau}_R^*$ | 0-3 R-hadron | Yes | 20.3 | 1.35 TeV | $m_{\chi^0} = 200$ GeV | 1506.06533 |
| $\tilde{\tau}_L^* \tilde{\tau}_R^*$ | 0 | | | | | |
| $\tilde{\tau}_L^* \tilde{\tau}_R^* \tilde{\nu}_L^*$ | 4 | 0 | Yes | 20.3 | 1.35 TeV | $m_{\chi^0} = 200$ GeV | 1506.06533 |
| $\tilde{\tau}_L^* \tilde{\nu}_L^*$ | 0 | | | | | |
| $\tilde{\nu}_L^* \tilde{\nu}_L^*$ | 0 | | | | | |
| **Other** | | | | | | |
| $\tilde{e}_L^* \tilde{e}_R^*$ | 0 | 2 | Yes | 20.3 | 1.35 TeV | $m_{\chi^0} = 200$ GeV | 1501.03125 |

Only a selection of the available mass limits on new states or phenomena is shown.
SUSY \(\ell^\pm \ell^\pm / 3\ell\)

Large number of signal regions aiming at strong production and both RPC and RPV models

ATLAS Preliminary

\[\sqrt{s} = 13\text{ TeV}, 13.2\text{ fb}^{-1}\]

Observed limit

Expected limit (\(\pm 1\sigma_{\text{exp}}\))

SS/3L observed limit 2015

[arXiv:1507.05525]

All limits at 95% CL

ATLAS Preliminary

\[\sqrt{s} = 13\text{ TeV}, 13.2\text{ fb}^{-1}\]

Observed limit

Expected limit (\(\pm 1\sigma_{\text{exp}}\))

ATLAS 8 TeV observed limit

[arXiv:1507.05525]

All limits at 95% CL
H/A $\rightarrow \tau\tau$

Search for anomalous high mass $\tau\tau$ production from additional high-mass scalar in various MSSM models

- Lepton+hadron and hadron-hadron tau-tau decay modes
- Signal regions with/without b-tags, and high-Etmiss in l-h modes
Dilepton Resonance Searches

ATLAS Preliminary

- $\sqrt{s} = 13$ TeV, 13.3 fb$^{-1}$
- Dilepton Search Selection

ATLAS-CONF-2016-045

- $m(e^+, e^-)$

ATLAS Preliminary

- $\sqrt{s} = 13$ TeV, 13.3 fb$^{-1}$
- $W' \rightarrow \mu\nu$ selection

ATLAS-CONF-2016-061

- $m(\mu, E_T^{miss})$

Results

- **W' (@95%CL)**
 - $m > 4.74$ TeV
 - (Run-1 $m > 3.24$ TeV)

- **Z' SSM (@95%CL)**
 - $m > 4.05$ TeV
 - (Run-1 $m > 2.90$ TeV)
Diphoton Search Limits

With 2015+2016 data:
- Small excess at 710 GeV ($\Gamma/m\sim10\%$)
- Local significance 1.4σ, global <1σ
SUSY Searches

The case for SUSY is well known
- Natural DM candidate in χ_1^0
- Can solve the fine-tuning problem - if t and g are light

From Run-1
- $m(\tilde{g}) > 1.4$ TeV for low mass χ_1^0
- $m(\tilde{t}_1) > 700$ GeV if $m(\tilde{\chi}_1^0) < 100$ GeV

Major goals for the Run-2 data:
- Extend mass reach (\sqrt{s})
- Fill “kinematic holes” where particles are soft
- “Leave no stone unturned” - displaced decays, heavy massive particles ...

Standard ATLAS approach in many searches:
- Focus on specific signatures, using simplified models to guide optimisation
- Data-driven backgrounds: multiple control regions to normalise MC predictions, help constrain systematic uncertainties
- Validation regions: verify background descriptions
- Signal regions: sensitivity!