The Hunt for Primordial Gravitational Waves with BICEP/Keck Array and SPIDER

Jeff Filippini for the SPIDER and BICEP/Keck collaborations ICHEP - August 5, 2016

A History of Creation

Universe becomes transparent

A History of Creation

Universe becomes transparent

Inflation

Inflation

Quantum **Primordial gravitational waves** Inflation fluctuations... $\frac{V[\phi]}{\left(4 \times 10^{16} \text{GeV}\right)^4}$ "inflaton" $r \approx$ GUT-scale physics!? metric tensor Quantum imprinted onto Fluctuations cosmic scales

Density perturbations

History of the Universe

History of the Universe

The Cosmic Microwave Background

The Cosmic Microwave Background

Challenges

PRECISION

Detectors approach <u>photon noise limit</u> Few photons, many detectors

ACCURACY

Rigid control of polarized <u>systematics</u> Instrument symmetry

CLARITY

Isolation of CMB from polarized <u>foregrounds</u> (*dust, synchrotron...*)

CARDIFF UNIVERSITY

UNIVERSITY OF TORONTO

UCSD

Compact receiver + Cold Optical Design

- Compact telescope to resolve only degree-scale features. *Minimum aperture for the science!*
- Entire telescope rotates around boresight for polarization modulation.
- On-axis, refractive optics
- Co-moving forebaffle to terminate sidelobes.
- Optical elements are cooled to ~4K to reduce internal loading (photon noise)

Photon-noise limited superconducting detectors

Multi-frequency to constrain CMB & foregrounds

Observe at 95, 150, 220 GHz

- 150 GHz through 2014
- Added 95 GHz in 2014 and 2015
- Added 220 GHz in 2015
- Now all three frequencies

Situated at a high, dry desert

South Pole Research Station, Antarctica ~10,000ft, ~0.25mm PWV

6 months of cold, stable winter sky with uninterrupted integration

BICEP2+Keck through 2014 (150 + 95 GHz)

B2 + Keck thru 2014 (150 GHz) → Final map depth: 3.0 µK' Keck 2014 (95 GHz)→ Final map depth: 7.6 µK'

Observations focused on $\sim 400 \text{ deg}^2$ patch = 1% of the sky

BK14: PRL 116.031302

100

0 북

-100

이권

-3

이 뒷

-3

Spectra (150x150, 95x95 and 95x150 GHz)

BK14: PRL 116.031302

Add data from Planck and WMAP

dominates at low frequencies Planck provides polarization measurements in 7 other bands at lower S/N, but can be 100 included in analysis. Two WMAP GHz bands as well. 143 GHz 217 GHz Polarized thermal emission (~20K) from galactic dust 353 GHz dominates at high frequencies Zeeshan Ahmed 16

Polarized galactic synchrotron

Take all possible auto- and cross- spectra! (66 of them)

BK14: PRL 116.031302

Joint likelihood of all spectra vs 8-parameter model

Measurement of Gravitational Lensing

Despite modest resolution (0.5°), BK map depth (3 μ K') enables direct reconstruction of lensing potential ϕ using only information at ell \leq 700

Measured amplitude (5.8σ) is in good agreement with the BB results! arXiv: I606.01968, ApJ in review

BK 2015 E-mode maps teaser

BK noise levels vs. foregrounds

BK14: PRL 116.031302

BICEP receiver evolution: Stage 2 to Stage 3

	B2/Keck	BICEP3
Window	260mm	680mm
Optics	f/2.2	f/1.6
FOV	15 deg	27 deg
Dets	288	2560

*comparisons at 95 GHz

Both designs use:

Ix pulsetube cryocooler (~30K, ~3K) Ix He3/He4 sorption fridge (~250mK focal plane)

arXiv: 1407.5928 arXiv: 1607.04668 arXiv: 1607.04567 arXiv: 1607.06861

First 700 hours of BICEP3 2016 science data

Degrees on sky

–505 Degrees on sky

– 505 Degrees on sky

Degrees on sky

BICEP Array (planned Keck Array upgrade)

Receiver	Nominal	Nominal Single	Beam	Survey Weight
Observing Band	Number of	Detector NET	FWHM	Per Year
(GHz)	Detectors	$(\mu K_{CMB}\sqrt{s})$	(arcmin)	$(\mu K_{\rm CMB})^{-2} { m yr}^{-1}$
Keck Array				
95	288	288	43	24,000
150	512	313	30	30,000
220	512	837	21	2,000
270	512	1310	17	800
BICEP3				
95	2560	288	24	213,000
BICEP Array				
35	384	268	68	37,000
95	3456	288	24	287,000
150	7776	313	15	453,000
220	9408	837	11	37,000
270	9408	1310	9	15,000

*Bolded numbers represent measured quantities from BK14 analysis

All other quantities scaled by frequency and/or NET

Survey Weight=2(Map Area)/(Map Noise)^2

arXiv: 1607.04668

Conclusions

- BICEP/Keck observations combined with Planck and WMAP data have produced most stringent constraints to date on inflationary gravitational waves
- Dust and gravitational lensing detected at high significance. No synchrotron yet
- Third generation receiver, BICEP3, taking science data in field. Will serve as baseline design for Keck Array upgrade in 2018

SPIDER Exploring the Dawn of Time from Above the Clouds

Jeff Filippini for the SPIDER collaboration ICHEP - August 5, 2016

The SPIDER Program

A balloon-borne payload to identify primordial B-modes on degree angular scales in the presence of foregrounds

- 1. Verify angular power spectrum Many modes high fidelity from ~10 < I < 300
- 2. Verify statistical isotropy Large (~10%) sky coverage
- 3. Verify frequency spectrum Multiple colors, (esp. 200+ GHz)

Rahlin et al., SPIE, arXiv:1407.2906 Fraisse et al., JCAP 04 (2013) 047 Filippini et al., SPIE, arXiv:1106.2158 O'Dea et al., ApJ 738, 63 (2011)

Balloonatics

0

 \square

SEARCHING FOR THE ECHOES OF INFLATION

Why Ballooning?

- High sensitivity to approach CMB photon noise limit
- Access to higher frequencies obscured from the ground
- Retain larger angular scales due to dimmer atmospheric fluctuations (*filtering*)
- Technology pathfinder for orbital missions

- Limited integration time (~weeks)
- Stringent weight/power constraints
- Very limited bandwidth demands nearly autonomous operations!

FIGURE BY A.S. RAHLIN (AM MODEL)

The SPIDER Payload

- I300L shared LHe cryostat (4K, I.6K)
- Lightweight carbon fiber frame
- Mylar sun shields for thermal control
- Attitude control
 - Reaction wheel (azimuth)
 - Linear elevation drives (elevation)

Pointing reconstruction In-flight (~I' accuracy)

- Differential GPS
- Magnetometer
- Pinhole sun sensors

Post-flight (~6" accuracy)

- 3-axis gyroscopes
- Orthogonal star cameras on deck
- Fixed boresight star camera

SPIDER Receivers

Loading reduction

4K refractive optics Infrared blockers Cold internal baffling Reflective forebaffle

Magnetic shielding

Multi-layer focal plane

Polarization modulation

Cold half-wave plate Custom worm drive Stepped *daily*

First flight (2015) 3x 94 GHz: 42' fwhm 3x 150 GHz: 30' fwhm 2400 TESs (96 dark)

Antarctica 2014-15

SPIDER Aloft!

- January 1-18, 2015: 16 days at 36 km
- All systems operational (*except dGPS, no science impact*)

RECOVERY

Full payload recovery courtesy of the British Antarctic Survey

• Data disks: Feb. 4, 2015

• **Payload**: Nov. 2015 All hardware back in our hands!

In-Flight Performance

- 1.56 TB of data
 - Cosmic ray flagging negligible \bullet
 - No obvious magnetic pickup ightarrow
 - RFI flagging significant •
 - ~30% total flagging so far •
- Very low stray photon load
- Sensitivities (NETs) consistent with expectations (~ 160 μK_{cmb} -rts / det)
- All HWPs turned reliably

	In-band	Instrument NET (det/total)	Preliminary estimates	
94 GHz	≲0.25 pW	~7 µK _{cmb} -√s (~80% used)	CMB calibration	
150 GHz	≲0.35 pW	~6 µK _{cmb} -√s (~70% used)		
Boomerang 150 GHz	~0.5 pW	~60 µK _{cmb} -√s	Conservative detector	
BICEP2 150 GHz	4.7 pW	~16 µK _{cmb} -√s	data selections	

SPIDER'S Sky

Planck Commander dust model

Sky coverage 12.3% (6.3% hit-weighted) e.g. BICEP2/Keck: 2.4% (0.9%)

SPIDER's Sky

Analysis in progress: temperature, polarization look good, stay tuned!

Dust Polarization

Avoid galactic CO lines

SPIDER was designed to wrestle with foregrounds

- High signal-to-noise detection of non-CMB polarization *visible in first flight data*
- Visible correlation with Planck data-informed dust model with higher sensitivity
- \Rightarrow Post-Planck sensitivities at high frequencies are crucial!

SPIDER II

Second flight (NASA APRA 2016) targeting 2017 - 2018 austral summer

- Expanded frequency coverage (285 GHz) to resolve foregrounds
- Successful recovery enables significant hardware reuse
- New flight cryostat complete, undergoing final testing

SPIDER II Receivers

Hubmayr et al., SPIE, arXiv:1606.09396 3x 285 GHz feedhorn-coupled arrays Stacked silicon wafer feed horn arrays Arrays in fabrication at **NIST**

up to 2 **JPL** 230 GHz receivers(*in fab*) + existing **JPL** 95 / 150 GHz receivers

Looking Ahead

Second flight targets 3σ detection of r=0.03 in the presence of foregrounds

Summary

- Primordial gravitational waves remain elusive...
- Post-Planck foreground maps are a key requirement for the field
- SPIDER's first flight was very successful, data analysis is well underway

Stay tuned for SPIDER-2 in 2017-18, with new highfrequency channels and instrument improvements

Thank you!

AA