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1. Introduction
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The beam-beam effect 1s central to the performance of
existing colliders (TEV, RHIC) and of the LHC. Not
surprisingly, it was on the menu of many CARE-HHH events:

1- Introduction

2002 LHC IR Upgrade collab. Meeting, CERN

2004 HHH-2004, CERN
2005 LUMI-05, Arcidosso
2006 LUMI-06, Valencia

2007 e+ Contributions to US-LARP workshop on beam-beam
compensation, SLAC,
e BEAM’07, CERN

* IR’07, Frascati
\ 2008 Meeting on beam-beam effect and compensation, CERN
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colliders are recorded, authored by:

Valishev, F. Zimmermann.

@d be mis-interpreted please correct me.

N. Abreu, Y. Alexahin, K. Cornelis, U. Dorda, W. Fischer, M.
Furman, W. Herr, A. Kabel, V. Kamerdzhiev, J.-P
Koutchouk, V. Lebedev, Y. Luo, C. Milardi, K. Ohmi, S§.
Peggs, 1. Pieloni, F. Pilat, J. Qiang, P. Raimondi, F.
Ruggiero, 1. Sen, W. Shiltsev, G. Sterbini, E. Tsyganov, A.

I have attempted, in the following, to combine or confront
these contributions. /f some material (taken from the slides),

Some 60 presentations of pure beam-beam 1ssues for hadror;\

/
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2.Phenomenology & beam-
beam limit
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2.1 Beam-beam limit \

The limit for AQ,,, (HO+LR) has been taken to be 0.01 for SLHC
(LPR626, 2002).
The Tevatron 1s now doing much better (HO):

0.03
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\( “Lessons from TEV”, Sen, 2007: the b-b performance

annot be characterized by the AQ,, alone... examples:
6
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hidden parameters ?

Proton Losses vs Pbar Emittance
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SPS experiment

100 beam lifetime m hours
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The LR can cut the beam
tails like a scraper.
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C:/VZ 2 Combination of Xing planes

(A 12re2iturn

erossing. nominal LHC tunes

LHC nominal tune, QX=30268, QY=31268
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Ohmi, 2007: H-H collision gives wide tune spread but limited
resonance, while H-V collision gives narrow tune spread but
more resonances.

F.Zimmermann, SPS exp with several wires: HH best, then
quasi VV, then quasi HV (lifetime) for nominal bunches

11/21/2008 HHHO8-jpk

10




A
¥

This 1s a key issue for the Early Separation Scheme that requires
tolerance to 4, 8 or 12 LR encounters at reduced distance. The
conjecture 1s that 56 could be sufficient for 4 encounters, perhaps
for more.

If not, either LR compensation must be used or an increased
separation to 7c with a corresponding loss of performance must
be accepted for this scheme.

\,. /
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/V 2.3 Minimum beam separation \

e SppbarS: 7LR’sat 66 + 1 LR at3.5¢6 + 1 LR at 9¢ for ultimate
bunch charge OK in operation for years.

e TEV: ran until 07/2006 with 4 LR’s at [5.0..5.66]; gained 5% to
10% in L integrated by increasing the separation to [5.6..6.4c].
Questions.: where the other LR's changed?; Simulation of wire

compensation of the few LR s at reduced separation had shown no
benefit ? Zhang et al., PAC 2003: 80% of helix OK?

= 1.04
Valishev, 2007: Separation is Sosloe P
not the sole important :? e e
parameter: resonances, Q’, e S R
z

. 5 ‘ .
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RHIC: Dorda simulations:”1LR per side per IP means trouble” \
Comment. this seems in contradiction with former observations. Is
it related to the “preparation” of RHIC?

e LHC: nominal scheme includes 17 LR’sat 76 + 1 LR at 56

* SPS wire experiments (26 & 37 GeV/c): possibly 4 LR’s at So
can be accepted. Variation of lifetime with separation very fast:

1000
| *
y = 0.0048x> %%

| R*=09859

Hence the 3.50 encounter at the
¥=0.72336"5% SPS would be equivalent to 243
R-0%4 encounters at 100 with ultimate

\ ; bunch charge: contradiction? Too
10

g 6 ; 5 s low lifetime in SPS experiments?
beam-wire distance [0]

—
o
o

lifetime [s]
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e ESS tracking (Sterbini)
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Hint: would the large number of LR's at 10 o
matter more than the few at reduced separation
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2.4 Effect of Large Piwinski angles

The LPA option and the Early Sep. with levelling both require
large Piwinski angles: 2 to 3.5 instead of 0.4 nominal.

101 1002 —_—
Ohmln.om
51 . 2008
3 1 3 0999
0.998 |
0.995 ——
0.99 ! ! L I ! T 0.996 ' . . . . . L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 0.050.1 0.15 0.2 0.25 0.3 0.35 0.4

turn (x 106]

LPA: WS & SS, OK for N =4.9 ES + level: WS, no LR

10! but not for 6 10! (with LR)

Ohmi, 2008: No problem found due to large LPA for HO collisions.
Tolerance for noise as usual for LHC (~0.1% in Xing position).
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3. Simulations and predictability

N P

11/21/2008 HHHO08-jpk 16




@ — ol
// 3.1- Position of the problem \

The three tools to study the beam-beam effect have
different limitations:

* Experiments: scarce, delicate, results may
depend on hidden parameters.

» Operations: parameters not disentangled.

* Simulations: three main issues: 1) relevance of
the physical model, 2) accuracy and speed of
the computational methods, 3) ability (or most

@en impossibility) to compute observables./
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C// 3.2 Status

We now have a large number of codes with a clear
progress 1n computational methods and speed.

The ability to produce observables (lifetime) 1s not far.

However, the model has limitations: artifacts to cope
with the too limited speed, impossibility to describe a
process largely influenced by unknown imperfections
and by distribution tails,...

\,. /
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C// 3.3 - Judgments

S. Peggs (2002): The HO b-b effect in weak-strong \
approximation is quite well understood.

M. Furman (2004): beam-beam simulations can predict
the past.

T. Sen (2004): Simulations are not yet the “real thing”.

Prepare for the unexpected.

A. Kabel (2007): Bias-free calculation of observable
quantities in proton machines is within our reach

V. Lebedev (2007): Good predictivity for the TEV.

T. Sen (2008): Encouraging results...
Tracking is essential but let’s remain critical

11/21/2008 HHHO8-jpk 19




3.4 — An example: diffusion

model for emittance growth at
RHIC (BBSIM)
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Workshop on beam-beam effects, T. Sen
28 August 2008
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G 4.1 — Compensation efficiency ~
1) Simulation: here tune diffusion \

Uncompensated Wire-compensated

{ { iIiiniiaNy . Dorda,
SR N | 007

..........
.........
-
"L
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|||||||||||||||

iiiiiiiiiiiiiiiiii

||||||||||||||||||||

DA =540 OB — T e

The color indicates the tune diffusion.
Lower amplitude particles are also “stabilized" .
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2) “compensation”: BBLRI1 by BBLR?2 in the SPS
CERN BBLR team, 30.07.04

Similar results in
2008: the tune
dependence i1s likely
to be associated to
an imperfect
compensation.
Furthermore, the
optimal tunes for
HO are not optimal
for LR (consistent
with SppbarS
observations)

—@— both BBLRs off

30.07.2004 Compensation near LHC tunes
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100 3
I i{ 3 i é
50 —s a— &
0
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QY
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nearly perfect
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3) LR compensation at Dafne

Approximate compensation: it is not possible in Dafne to
locally correct as in the LHC.

Observations: no increase of luminosity but increase of lifetime
vielding 30% increase in integrated luminosity, suppression of a
sudden blow-up; reduction of background.

RESULTS from LIFETRACK
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@%2 — Compensation robustness ™~

Versus position and tunes

2 Loss rate
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An effective compensation does not require accurate control of
position neither tunes. Other data suggest the same robustness
with respect to the excitation current. The noise level 1s very lo
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.3 Compensation of Pacman bunchcﬁ

Mitigation, using dc wire Lo
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C/gl- TEL Performance at the TE
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Beam-Beam Compensation with TELs

17

e The TEL is reliable (since 2002) and does not cause blow up of p’s.
e [ts success as a bunch-to-bunch linear tune shift corrector is
established, with improved beam and luminosity lifetimes.

e [ts performance as a non-linear HO beam-beam compensator is not

vet experimented.
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* |t was shown for the LHC that for reasonable tolerances of the

Tgyga noy, ( S S C ] 99 3 ) 2 00 7 low energy beam parameters quite good head-on beam-beam

effect compensation could be obtained and beam-beam tune
spread could be reduced by a factor up to about 100.
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Head-on Beam-Beam Tune Shift

A clear benefit for LHC appears for intensities and beam-
beam parameters above nominal, i.e. for SLHC.
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/gg- Sensitivity of TEL Performance\
to the betatron phase
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The TEL remains effective for a “wrong” betatron phase. The
tune footprint compression seems to dominate over resonance
tation.
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@k// 6 - Conclusions

The beam-beam effect: The TEV has raised significantly the
beam-beam limit. The complexity of the HO b-b effect is much
enhanced by the long-range beam-beam encounters. There is a
great incentive to be able to separate more than by 10o.
Crossing planes: The best scheme does not seem to be decidable
by simulation. Provisions for all schemes (HV, HH, VV) seems
advisable for the SLHC.

Minimum beam separation: The operations, experimental and
simulation results are not yet consistent. The simulation effort is
on-going (Kaltchiev). RHIC experiments critically needed.
Large Piwinski angle: no show stopper identified. More

(ulation needed (effect of LR, diffusion in tails,..) /
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@k/V 6 - Conclusions

Simulations: the major tool for studying b-b even though its
predictability is not established except in “perturbative mode”.
Requires lots of care.

Wire Compensation: Its efficiency is established as far as
possible. A positive experience already exists (Dafne). A
mitigation can be made for the PACMAN bunches using a dc wire
excitation. The principle of an RF solution has been put forward
but its feasibility remains to be established.

TEL Compensation: With the TEV experience, the TEL is not
anymore an exotic idea, but a reliable device. It will gain full
acceptance when some gain will have been demonstrated in non-
linear HO compensation mode. Significant potential for LHC.

w leveling, flat beams, wire technology, ...
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