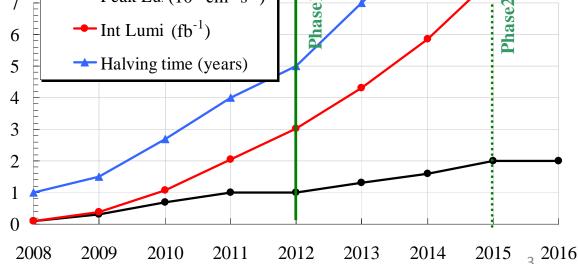

High Field Magnets


Lucio Rossi CERN

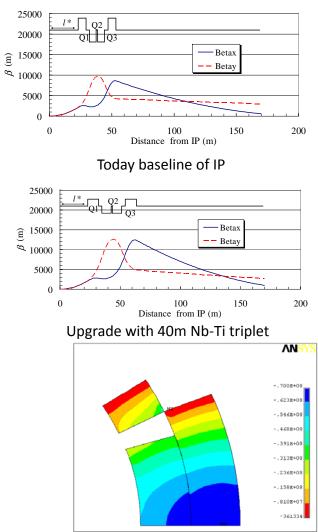
Content

- Reasons for the High Field magnets for LHC
- Comments on materials availabale
- World panorama
- Advances in HFM in EU
- Plans

Reason: LHC Lumi up -1

Reason: LHC Lumi up - 2 $L = \frac{f_{rev} \gamma}{4\pi\varepsilon_n} (N_b)^2 n_b \frac{F(\beta^*)}{\beta^*}$

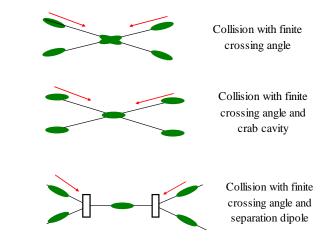
- The focusing is presently limited by the aperture of the quadrupoles Q1-Q3 around the IP (the so-called triplet)
 - The beta function of the beam in the quadrupoles is $\propto 1/\beta^*$
 - The present aperture of 70 mm limits β^* =0.55 cm
 - Changing the triplet, one hits the hard limit of the chromaticity correction at
 - Nb₃Sn triplet $\beta^*=0.14$ cm

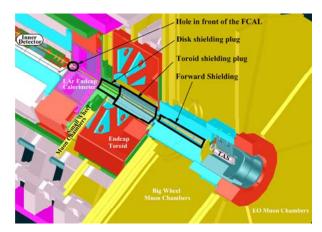

[E. Todesco et al, CARE LUMI-06 J. P. Koutchouk et al., PAC 07]

- If the distance of the triplet from the IP is reduced from 23 m to 13 m (extreme case, not feasible), one can further improve by ~25%
 - Nb₃Sn triplet $\beta^*=0.11$ cm

Cont.

(E)


- A larger (longer) triplet
 - Aim: have a larger aperture to be able to go at β^* = 15 cm down to the limit imposed by chromaticity
- Final solutions (could be)
 - Nb₃Sn magnets, around 150 mm, ~ 10 m long, to be used for phase II (with ... see next slide)
 - Smaller β^*
 - Better tolerance to energy deposition ٠
- **General challenges**
 - Large aperture, large stress
 - Energy deposition
 - Good field quality



Estimated forces in the coil

... in conjuction with Crab cavity and/or Early separation scheme

- Aim: kill the geometrical reduction factor that reduces luminosity for β^* <25 cm
 - Idea: the bunch is rotated longitudinally to maximize the collision area
 - Status: tested at KEK on electron machine
- Early separation dipole
 - Aim: as crab cavity
 - Idea: Have zero crossing angle but separate the beams as soon as possible to avoid parasitic beambeam interaction with a dipole (~5 Tm)
 - Challenges: has to be in the detector, in a high radiation environment
 - Status: integration studies ongoing
- Each technologies could not completely set F=1 \rightarrow both could solve it completely

Positions where D0 could be integrated

General consideration

Touching the insertion is a "local" action, easier than touching the entire machine.
Very high beam intensity, beyond nominal will not be easy to manage and machine protection might become a real issue

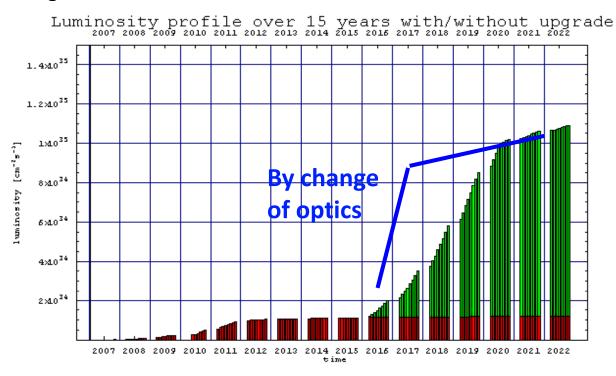
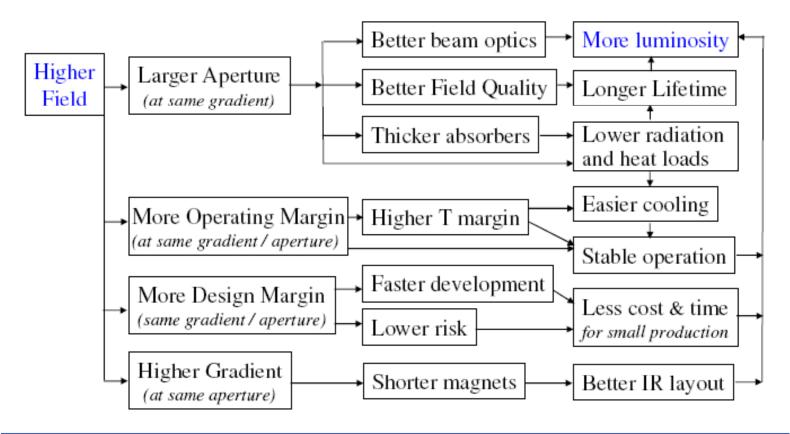



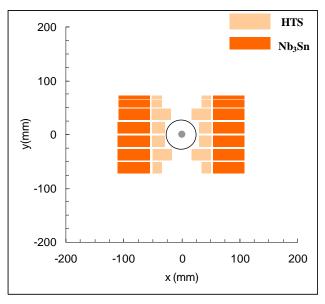
Fig. 1 Evolution of LHC luminosity according to the reference scenario (LHC project report 626 (2002) scaled according to empirical law (V. Shiltev, J. P.Koutchouk)

Space of parameters for a choice Quadrupoles for the LHC Phase 2 Upgrade

High field technology provides design options to maximize luminosity

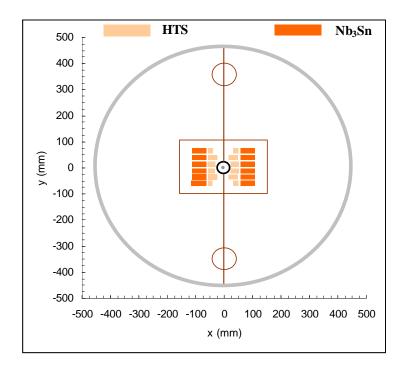
8

HFM – reasons (not only triplets)

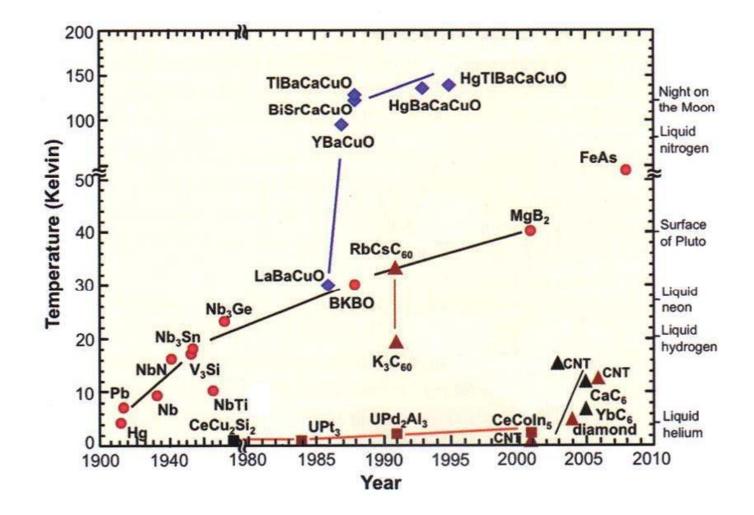

- New magnets are needed for the LHC phase 2 upgrade in about 10 years
 - Quadrupoles for the low-beta insertions
 - Corrector magnets for the low-beta insertions
 - Early separation dipole (D0)

and possibly

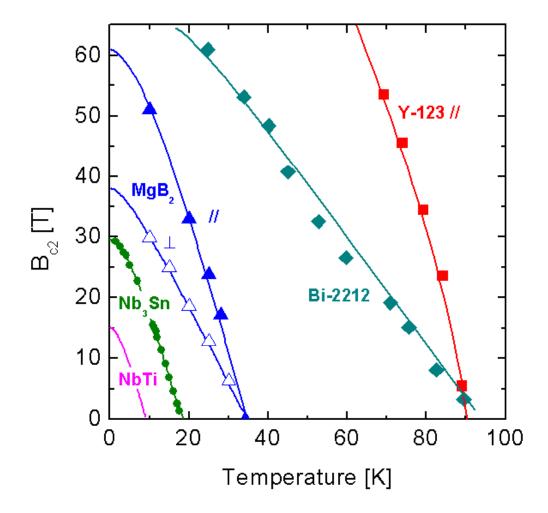
- Dogleg dipoles for the cleaning insertions
- Q6 for cleaning insertions
- 10 m dipoles for the dispersion suppressors (room for collim.)
- New magnet types needed for a neutrino factory
 - Open midplane dipole for a muon decay ring (10-15 T)
 - Open midplane dipole for a beta beam decay ring (6-8 T)
- LHC-FEF horizon:
 - we <u>have a tunnel with the proper infrastructure</u>, the Farthest Energy Frontier (30-40 TeV c.o.m.) will be on the table in 2013-2015.

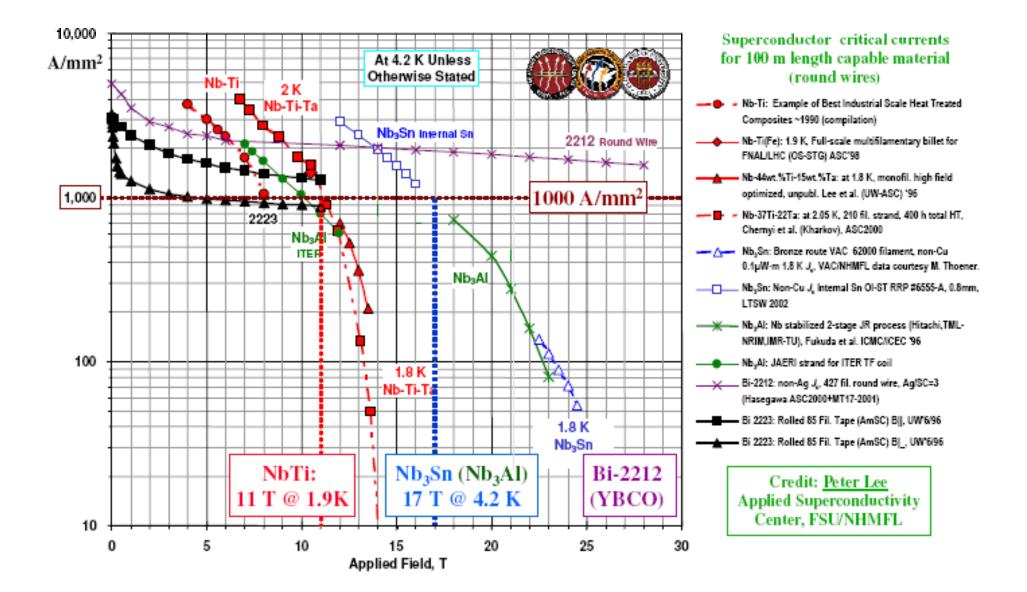

A 20 TESLA DIPOLE

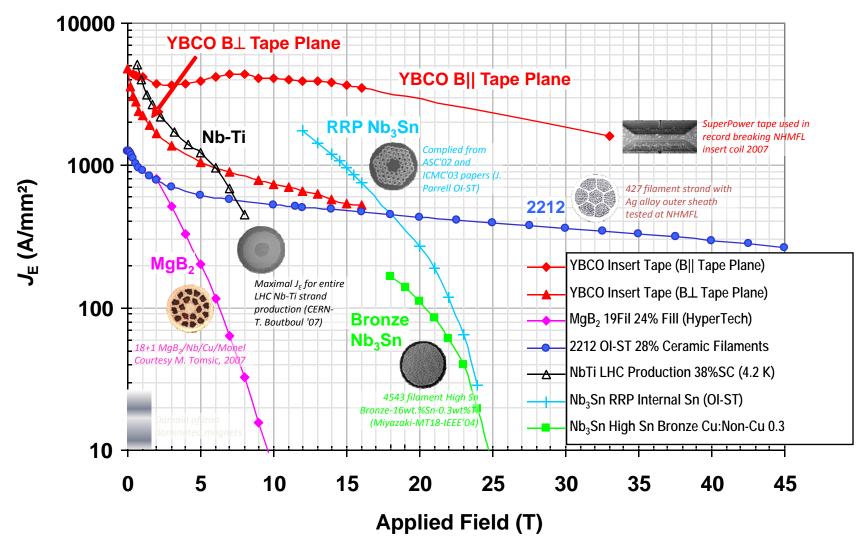
- 50 mm aperture
- 20 Tesla operational field
 - Inner layers: High Tc superconductor
 - Outer layers: Nb₃Sn



Courtesy E. Todesco

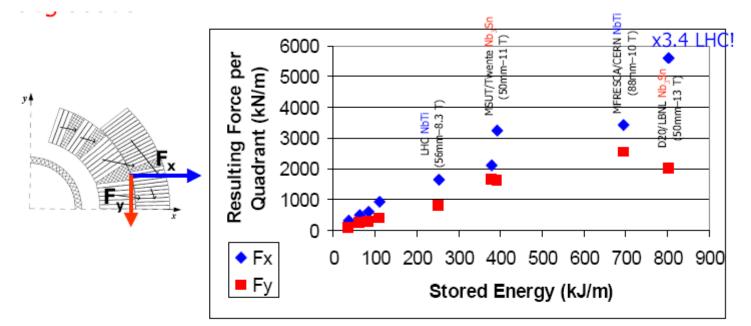

- Operational current: 18 KA
- Operational current density: 400 A/mm²
- 20% operational margin


First: critical temperature


Second (for magnets): Critical field

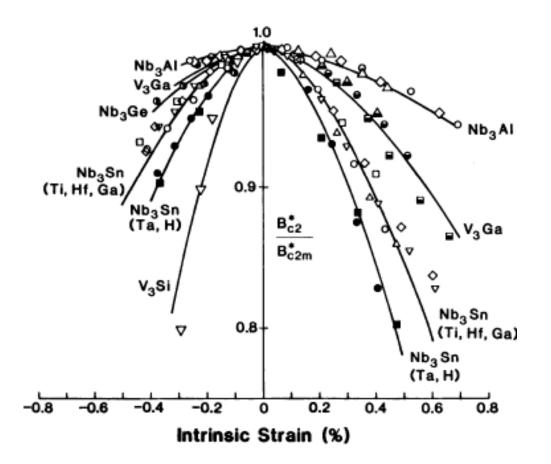
Third : Critical current

Critical current in actual conductor



HF SC are there: so why waiting?

- NbTi was an affirmed technology at the end of the '70s
- In the '80 4 T accelerator magnets were available
- In the '90 8 T accelerator magnets proved
- Only in 2001 we started the industrial production of LHC.


HF/large margin SC is an enabling technology but...

- Control of large forces and large stresses
- Magnet protection becomes more and more severe (due to high temperature margin thermal stability is less an issue)

... continue

• All HF superconductor are brittle and strain sensitive

The route (we are pursuing)

- (super)conductor first:
 - Proper material that can be manufactured in industrial technology
 - Proper choice for cable and "cablability": what is used is cable with fairly large current: 10-20 kA
 - Development of proper winding and coil manufacturing technology
 - Extending reach of costheta coils but also explore new concepts: mechanical structure and assembly
 - Advancing in modelling capability and diagnostic

The frame

A Worldwide Collaboration Network

- **LARP** Participants: BNL, FNAL, LBNL + CERN
- (MagSys) Goal: <u>fully qualified quadrupoles for SLHC</u> (Phase 2 upgrade)
- Participants: CCLRC, CEA, CERN, CIEMAT, INFN, UT, WTU
- (NED) Goal: basic R&D on <u>conductor</u>, <u>insulation</u>, <u>design</u>, <u>quench</u> <u>protection</u>
- **EUCARD** Participants: CERN, CEA, CNRS, COLUMBUS, DESY, EHTS, (HFM) FZK, INFN, PWR, SOTON, STFC, TUT, UNIGE
 - Goal: high field Nb₃Sn dipole model & very high field (HTS) insert

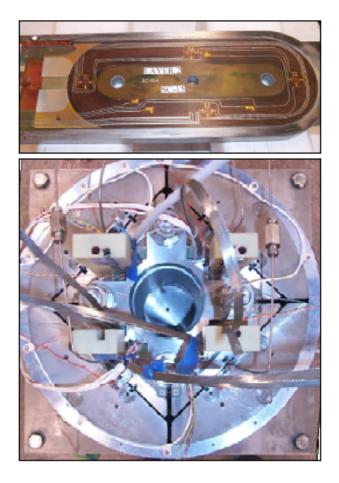
Inter-Laboratory collaborations on specific topics:

- CERN, RAL, CEA, LBNL on Short Model Coil development
- KEK & NIMS, FNAL, CERN on Nb₃Al conductor and coils
- LBNL & KEK on Nb₃Sn coil, structure and assembly methods
- KEK & CERN on LHC upgrades
- CERN & CEA, UT, LBNL/LARP on magnet testing
- LBNL & FNAL, CERN, UT, TAMU on cable development

The necessary start: small models to test conductor in real situation

LARP Sub-scale Quadrupoles (2005-06)

Design features:


- Based on LBNL "SM" design
- Four racetrack coils, square bore
- Aperture 130 mm, Length 30 cm

R&D Goals:

- Conductor performance verification
- First shell-based quadrupole structure
- FEA models verification
- Quench propagation analysis

Results:

- Two models tested at LBNL & FNAL
- SQ02: 98% of SSL at 4.5K & 1.9K

Then easy shape (racetrak) to scale up

LARP Long Racetrack (2006-08)

- Scale up LBNL SM coil and structure: 30 cm to 4 m
- Coil R&D: Cable, handling, reaction, impregnation
- Structure R&D: friction effects, magnet assembly
- BNL: coil fabrication, magnet assembly and test
- LBNL: magnet design, structure fabrication/assembly
- FNAL: contributions to design and coordination
- Fast training: LRS01 first quench at 84% of SSL
- LRS02 achieved 11.5 T, 96% of short sample limit

Series of models & long dipoles at FERMI

Less striking as quench performance but extremly useful for: Assessing and stabilizing coil winding technology; Instability issue pointed out Assess of field quality in NbSn winding : a CERN analysis showed only a factor 2 worst than mature NbTi technology in random hamonics.

Fermilab Mirror Dipole (2006-08)

- Three steps were performed: 1m, 2m and 4m models
- First length scale-up of Nb₃Sn cosθ coil technology
- Experience applied toward LARP models

Gradients higher than LHC triplet are already there (in 1 m long) LARP Technology Quadrupoles (2005-08)

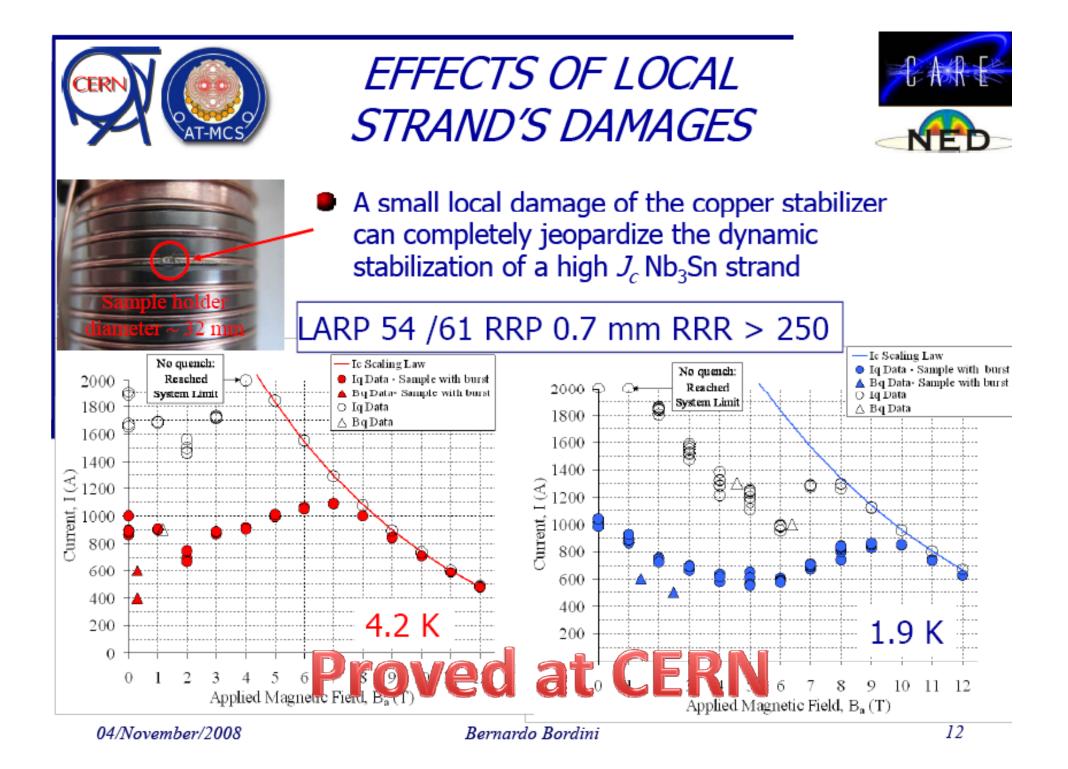
- Double-layer, shell-type coil
- 90 mm aperture, 1 m length
- Two support structures:
 - TQS (shell based)
 - TQC (collar based)
- Target gradient 200 T/m

TQC TQS OCO OCO OCO

Winding & curing (FNAL - all coils)

Reaction & potting (LBNL - all coils)


... continue on 1 m long quads

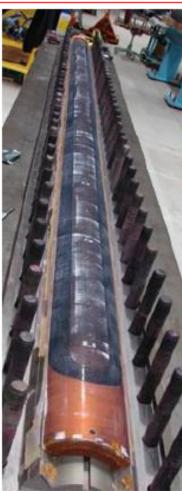


TQ Results Summary

Model	First Training at 4.4K			First Training at 1.9K			Highest Quench*	
	G _{Start} (T/m)	G _{Max} (T/m)	G _{max} /G _{ss} (%)	G _{Start} (T/m)	G _{Max} (T/m)	G _{max} /G _{ss} (%)	G _{Max} (T/m)	G _{Max} quench conditions
TQC01a	131	154	72	151	196	87	200	1.9K, <i>100A/s</i>
TQC01b	142	178	86	179	200	90	200	1.9K
TQC02E	177	201	87	198	199	79	201	4.4K
TQC02a	124	157	68	145	164	65	169	1.9K, <i>50 A</i> /s
TQC02b	141	173	85	158	173	78	175	3.6K, 50A/s
TQS01a	180	193	89	n/a	n/a	n/a	200	3.2K
TQS01b	168	182	84	n/a	n/a	n/a	182	4.4K
TQS01c	159	176	81	176	191	82	191	1.9K
TQS02a	182	219	92	214	221	85	222	2.2K
TQS02b	190	200	84	196	205	79	205	1.9K
TQS02c	216	222	93	205	209	80	231	2.7K

Optimized models surpassed the 200 T/m target gradient with good margin

Will good news continue to come from beyond the US ?


Present focus: Long Quadrupole (LQ)

Scale up of TQ design from 1 m to 3.6 m

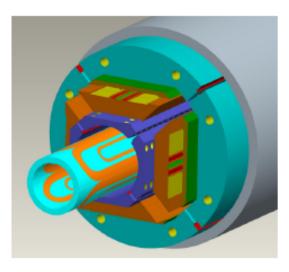
- Coil design and fabrication: FNAL & BNL
- Structure design and fabrication: LBNL
- Magnet assembly: LBNL
- Magnet test: FNAL

Two LQS tests are planned for 2009

Test bench for Nb3Sn : the CERN phase 1 NbTi quads

Next Step: 120 mm Quadrupoles

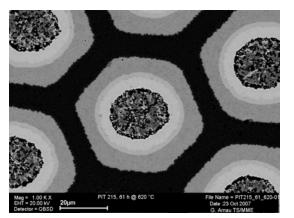
Completed:


- Cable optimization & test winding (LBNL)
- Coil cross-section and end design (FNAL)
- Winding/curing tooling design (LBNL)

In progress:

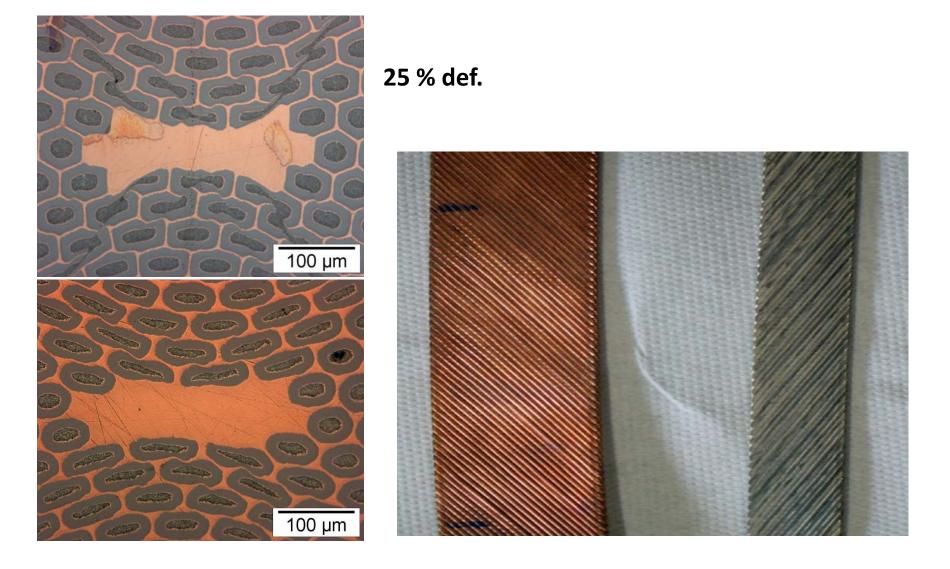
- Reaction/potting tooling design (BNL)
- Coil parts procurements (FNAL)
- Support structure design (LBNL)

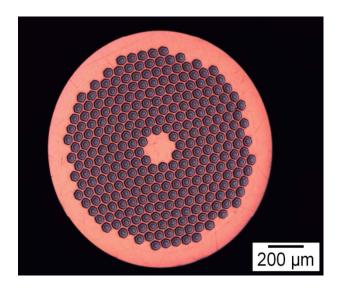
Plans:


- Test 1 m models (HQ) in 2009-10, 4 m models (QA) in 2011-12
- Aiming at full qualification based on Phase 1 upgrade requirements
- Conductor-limited gradient is about twice the Phase 1 requirement
- Will provide performance reference for Phase 2 upgrade design

The results of NED conductor

Before NED in EU

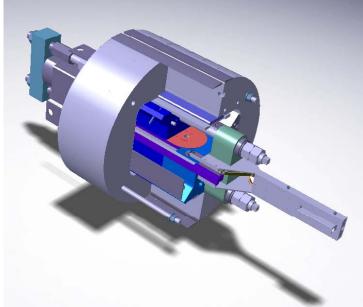

- Jc = 1000 A/mm2
- Filament diameter of 70 μm
- Wire size of 0.9 mm
- RRR only occasionally good
- Small size billet
- No industrialization scale up


Today state-of-the-art in EU

- Jc = 1500 A/mm2
- Filament diameter 50 μm
- Wire size of 1.25 mm
- RRR = 200
- Factor 10 size billets
- Process taken up by large industry
- Long length in production: strands for 250 m of cable (done b CERN/LBNL) in 2008

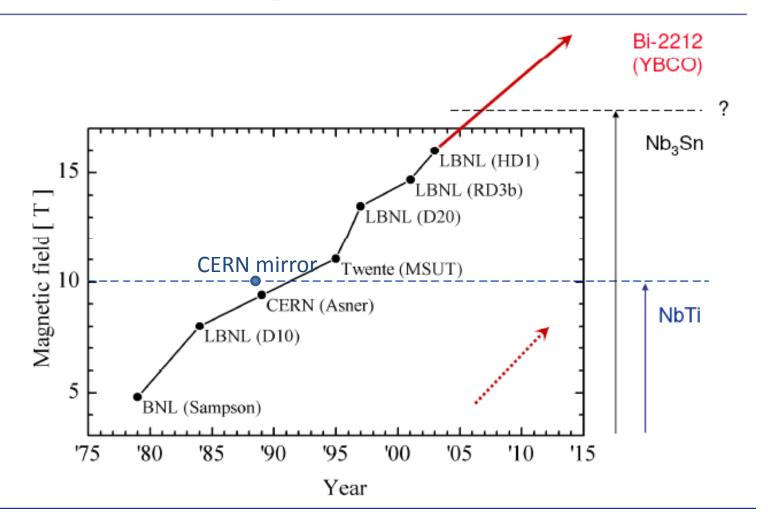
Technological advancement needed to make this Material a CONDUCTOR

Optimization of heat treatment B215


- After two trials at 625 °C (200 and 260 hours), 2 samples were treated 320 h @ 625 °C at CERN, 2 additional samples reacted at Twente.
- I_c data consistently measured at CERN and Nijmegen in the range: $I_c = 1494-1539 \text{ A} @ 12 \text{ A}$ 4.22 K, corresponding to $J_c \sim 2700 \text{ A/mm}^2$, + 10 % as compared to standard HT.

31

- 15 T, 4.222 K: I_c > 818 A (NED spec.), J_c ~ 1500 A/mm²
- *New record!!* B215 strand completely fulfilling NED specification.
- RRR data impressive as well since **RRR ~ 220** for virgin strands!! Better for stability.


Next step : NED1.5 phase Short model coil (SMC)

- Participant funding only (formally outside FP6-CARE-NED)
- CCLRC/RAL, CEA and CERN have agreed to manufacture and test a series of LBNL-type Short Model Coils wound from NED-sub-cables so as to investigate
 - cable and insulation performances in real coil environment,
 - design limits for transverse and longitudinal loads.
- Coil and cold mass design finished, winding tests with dummy Cu+Nb₃Sn in progress by RAL-CERN team (with LBNL) Nb₃Sn cable done (120 m ready: 3 poles). Tender for structure components called. First magnet foreseen to be tested in Spring/Summer2009 at CERN

The scope in the next five year

High Field Dipoles

33

2 scopes of the HF dipole

upgrade of CERN MFRESCA cable test facility

(presently limited to 10 T, ϕ = 88 mm) to:

- 13-15 T
- Imax = 30 kA with Power converter
- Imax . 50 kA with transformer to offer unique services to the entire applied superconductivity community.

Getting ready when we will need HFM in LHC or for the upgrade: around y >2015

The experience of LHC has shown that 10 years are needed to develop a tecniology and make it usable in real conditions.

CARE, and HHH in particular has provided a unique background to unify the magnet community of accelerator in Europe. EUCARD and alliprogress are based on the succes of HHH network and of the NED program