Status of the PS2

Michael Benedikt

for the PS2 Working Group

Contents

- Performance requirements
- Main machine parameters, implementation and geometry
- RF and lattice design status
- Machine performance

Performance requirements

- Beam brightness for LHC luminosity upgrade:
 - Reach twice brightness of the ultimate 25 ns LHC beam (~20% reserve for losses): 4.2×10¹¹ per LHC bunch (inst. 1.7×10¹¹)
 - Determines average line density in the machine at injection and therefore the injection energy via incoherent SC tune spread.
 - → injection energy 4 GeV
- Significantly higher injection energy into SPS (~50 GeV).
 - Injection into SPS well above transition energy
 - Reduced space charge at SPS injection
 - Smaller transverse emittances and reduced losses
 - Potential for long-term SPS replacement with higher energy.
 - Ejection energy determines PS2 size and magnet requirements
- As versatile as existing PS
 - Protons, ions, high intensity physics beams, slow extraction, etc.

Considerations on machine size

- Constraints from desired extraction energy ~50 GeV
 - Iron dominated dipoles B ≤ 1.8 T
 - PS2 will have ~twice PS size i.e. R ~ 200 m and C ~ 1250 m.
- Constraints from filling SPS for physics
 - Complete filling of SPS circumference desired for HI FT physics
 - Use island multi-turn extraction scheme, similar to PS (5-turns)
 - Ideal PS2 length 1/5 SPS = 11/5 PS = 2.2 PS.
- Constraints from PS2-SPS synchronisation (rf cogging)
 - N x h_{PS2} = K x h_{SPS} is needed for correct synchronisation
 - Best candidates are (N, K) = (77, 15) or (77, 16)
 - Where 77/15 is preferred (5 PS2 slightly shorter than the SPS.)
- Optimum length for PS2 from above arguments
 - PS2 = 15/77 SPS = 15/77 * 11 PS = 15/7 PS.
 - Circumference PS2 = 15/7 PS = 1346.4 m, radius PS2 = 214.3 m
 - h (200MHz SPS) = 4620, h (40MHz SPS) = 924, h (40MHz PS2) = 180

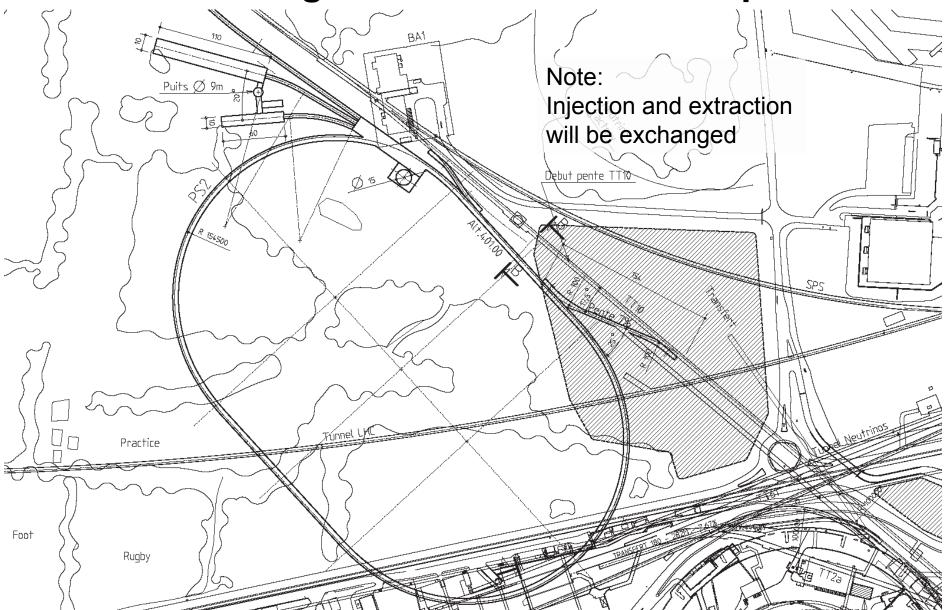
Considerations on magnet technology

- Iron dominated magnets
 - Baseline and lattice design assumes normalconducting conventional magnets
 - First NC design for dipoles and quadrupoles done.
 - Superconducting coil (SF option) is being investigated.
 - Considered because of energy saving arguments
 - SF R&D programme ongoing only for dipole, short prototype for measurements by end 2009/2010
- Fast cycling high field SC option (co theta) ruled out (→extended PAF meetings with DG in 2007)
 - Too high AC losses therefore uneconomic!
 - Gain for machine energy increase limited and not required.

Integration in existing complex - Injection

- With injector upgrade i.e. (LP) SPL replacing PSB + PS (LE)
 - H- injection at ~4 GeV (LPSPL with 20 mA assumed)
- Ion operation
 - Beam from LEIR at ~1.25 GeV p-equivalent, rigidity 6.67 Tm
 - Requires LEIR upgrade: main converter, extraction elements, transfer line elements, rf system for LHC ion scheme with PS2.
- With staged approach i.e. PS2 before/in parallel to LP(SPL)
 - Injection from existing PS (to bridge PSB to PS2 energy gap)
 - PS running only at low energy, below transition ($\gamma_t \sim 6.1$).
 - Commissioning of PS2 in parallel to SPL and physics operation.
 - Performance limited by
 - PS SC limit at injection (line density corresponding to ultimate)
 - Filling pattern and cycling time (double batch PS -> PS2).

Integration in existing complex - Extraction


- Several extractions towards the SPS:
 - Fast (single turn type)
 - LHC beams
 - "Continuous Transfer" multi-turn extraction (5-turn)
 - Filling of SPS for fixed target physics.
- Extraction for physics at PS2
 - Slow resonant extraction
 - High intensity fixed target (similar to SPS)
 - Fast extraction
 - Target test facility, etc.

PS2 experimental areas, anti-proton physics

• Experimental area for PS2

- For high power experiments an under ground or strongly shielded area will be mandatory
 - PS EAST hall very limited for radiation protection reason
- For (low-intensity) test beams a facility on surface could be considered
- Anti-proton programme
 - No straightforward way to send p to AD
 - ~ 1 km of transferline + reuse of PS tunnel for turning required
 - Full PS2 potential for anti-proton production cannot be exploited with AD and AD target station
 - Consider alternative solutions (new or modified/moved AD, etc.)
 - Antiproton programme not defined in PS2 period (>2017)
 - FAIR foresees antiproton programme from 2015.

PS2 integration and machine shape

Machine shape

- Location of the machine at end of TT10 in flat part, -50m
 - Injection from SPL (parallel to TT10) (with short transfer line)
 - Injection of ions directly from TT10 for ions
 - Injection of protons directly from TT10 if required for commissioning before SPL or intermediate period.
 - Extraction towards the SPS via TT10 and existing SPS injection channel in point 1 with short transfer line
- Optimisation leads towards a racetrack shape of the machine
 - Two long D=0 straight sections, min. number of suppressors.
 - Super-symmetry 2 with mirror symmetry within superperiod, mirror planes centre arc and centre long straight section
 - One long straight section for injection and extraction
 - Other long straight section for RF

RF system

- RF system must provide:
 - Proton acceleration: revolution frequ. ratio : 1,024 (3% tuning)
 - Pb54+ ions revolution frequency ratio in PS&PS2 with injection directly from upgraded LEIR at 6.7 Tm: 2,1 (210% tuning range)
 - Injection field 670 G for ions, 1650 G for protons
 - LHC bunch spacings and beams for SPS FT operation
- 40 MHz system is the preferred variant (review May 2008)
 - Motivated by (LP) SPL providing 0.6 ms (1.2 ms) quasi-continuous H⁻ beam 352 MHz, ~1.4E14 per pulse with chopping at 40 MHz.
 - Any LHC bunch pattern up to 40 MHz via chopping at injection
 - Minimizes rf gymnastics in PS2 and systems (\rightarrow impedance).
 - Bucket length limitation of 25 ns (50 ns with tuning range of factor 2)
 - Special schemes for ions, limited performance for single bunch (nTOF)
 - E-cloud issues in the PS2 with 40 MHz from injection?
 - Question on possible tuning range (in particular for ions)

40 MHz RF R&D program

• Preliminary planning:

- November 08 April 09
 - Survey market for suitable ferrite material
 - Design test set-up for low power RF characteristics measurements
- May 09 July 09
 - Test stand and set-up fabrication
 - Material tests at low power and determination of relevant parameters

– August 09 – December 09

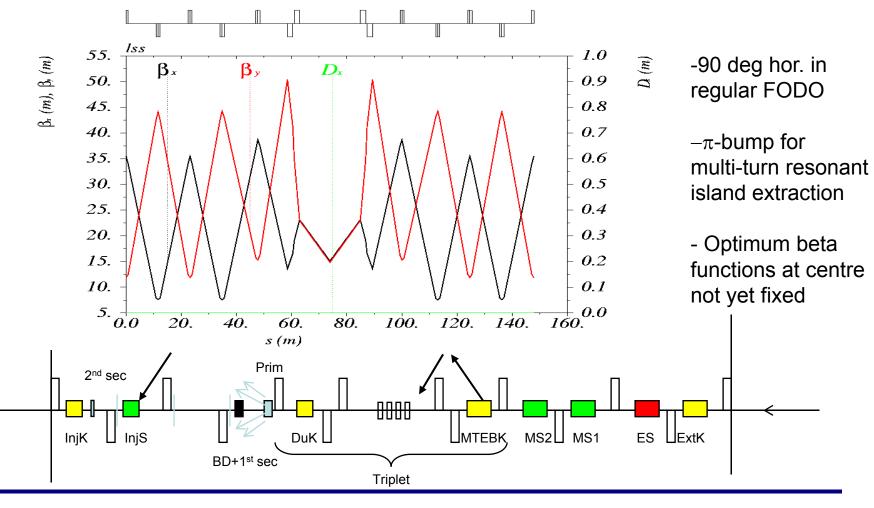
- Choice of ferrite material
- · Design test system allowing relevant high power tests in cavity like geometry
- Design of RF power amplifier with required tuning range for high-power tests
- Simulation of impedances, HOM, etc.
- January 10 July 10
 - High power lab tests of "prototype" cavity
 - Tests with beam?

Lattice Design

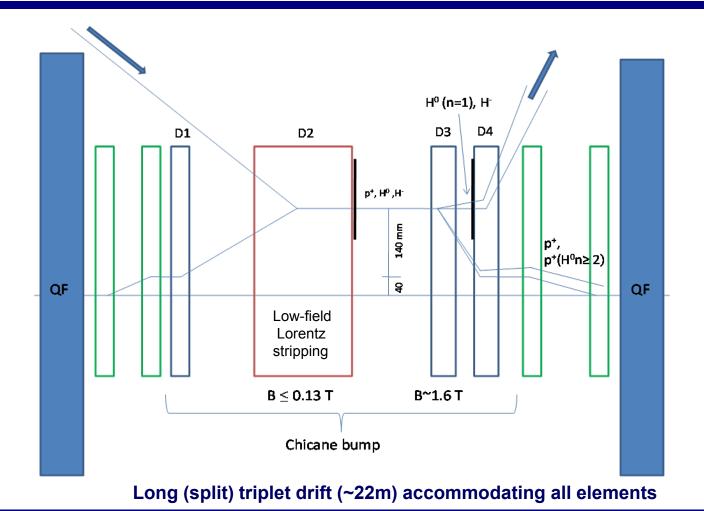
- Preferred lattice option with imaginary g_{tr}: (review May2008)
 - Avoids transition crossing \rightarrow simpler operation, reduced losses.
 - More complicated lattice design and more magnet types/families

Lattice structure:

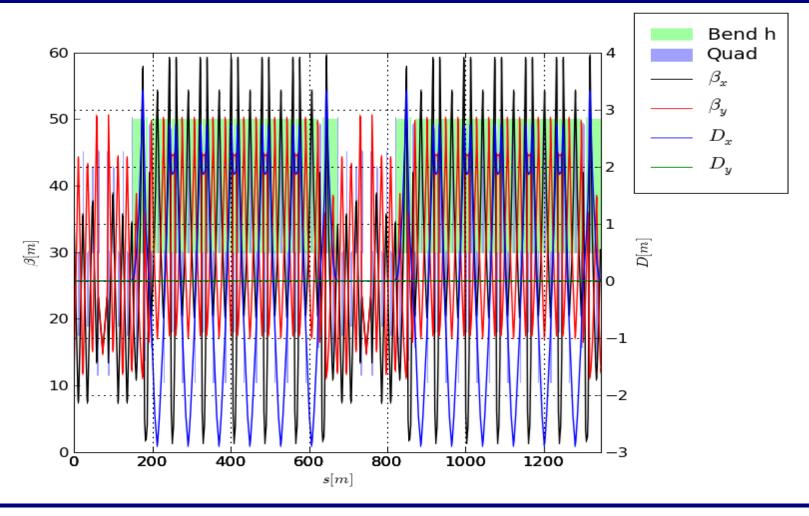
- Regular arc modules with NMC
- Dispersion suppressor modules
- Long D=0 straight sections for injection/extraction, RF.


[GeV]	imaginary, adjustable
[T]	< 1.7
[T/m]	< 17
[m]	< 60
[m]	< 6
[m]	0.6
[m]	1.2
	(T) (T/m) (m) (m) (m)

Diagnostics, correctors, vacuum


PS2 NMC module and suppressor (531)

D=0 long straight section

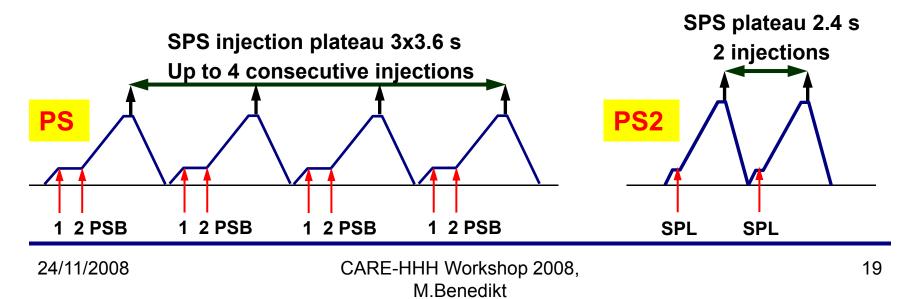


Optimised injection insertion: H- multi-turn, 4.0 GeV - based on FNAL Project X concept

24/11/2008

Ring optics 531

Performance of PS2


- Twice average line density of PS
- Twice longer machine
- Twice extraction energy
- Identical acceleration time

Theoretically factor 8 increase in power (assuming identical normalised emittances)

- Shorter cycle time in some cases (LHC without double batch)
 - Basic machine cycle of 2.4 s with fast (CT) extraction at 50 GeV.
 - Physics cycle with 3.6 s with slow extraction at 50 GeV (phyics duty cycle 1/3)

LHC beams

- Example 25 ns beam (SPL injector):
 - PS2 will provide "twice ultimate" LHC bunches with 25 ns spacing
 - Bunch train for SPS twice as long as from PS
 - Only 2 injections (instead of 4) from PS to fill SPS for LHC
 - PS2 cycle length 2.4 s instead of 3.6 s for PS
 - Reduces SPS LHC cycle length by 8.4 of 21.6 s (3x3.6 1x2.4)
 - Accordingly reduced flat bottom with beam in LHC (35% reduction).

High-intensity physics beams

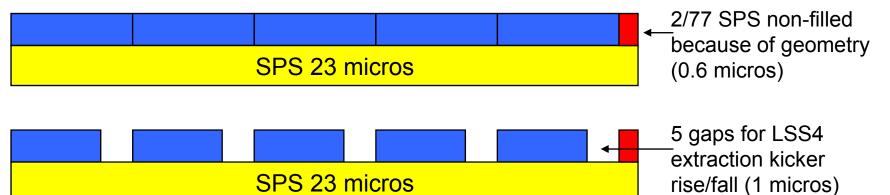
• SPS fixed target beam:

- PS2 will provide twice line density of PS high-intensity FT beam
- Twice circumference gives up to 4 times more intensity
 - ~1.2E14 per PS2 cycle
- Five-turn extraction will fill SPS with single shot instead of 2 from PS
 - Twice more intensity in SPS via twice higher line density.
 - No injection flat bottom in the SPS
- Clean bunch to bucket transfer PS2 40 MHz to SPS 200 MHz (cf. LHC)
 - ~7E11 protons per PS2 40 MHz bucket
 - Reduced by factor 5 to ~1.7E11 in 1 out of 5 SPS 200 MHz buckets
- Transverse emittances: like upper limits of present CNGS beam
 - Norm. sigma emittances 15/8 mm mrad (h/v)
 - Adiabatic emittance damping at 50 GeV by $(\beta\gamma)_{13}/(\beta\gamma)_{50} = 0.27$
 - Therefore ~1/2 present beamsize due to emittance.

Summary

- Choices made for lattice design and RF concept
- Main activities for next months
 - Launch RF R&D programme
 - Iteration on lattice design and space allocation
 - Machine integration wrt SPS, TT10, SPL and CE requirements
 - More detailed beam dynamics studies
 - Start design on technical systems
- Project proposal (TDR + cost estimates) for mid-2011
- Thanks to all PS2 WG members and all colleagues that contributed to the study

Back-up slides


PS2 preliminary parameters

Parameter	unit	PS2	PS
Injection energy kinetic	GeV	4.0	1.4
Extraction energy kinetic	GeV	~ 50	13/25
Max. intensity LHC (25ns)	ppb	4.0 x 10 ¹¹	1.7 x 10 ¹¹
Max. intensity FT	ррр	1.2 x 10 ¹⁴	3.3 x 10 ¹³
Max. stored energy	kJ	1000	70
Linear ramp rate	T/s	1.5	2.2
Repetition time (50 GeV)	S	~ 2.5	1.2/2.4
Max. effective beam power	kW	400	60

CNGS-type upgrade beam from PS2

• Filling the SPS with 5 turns from PS2

PS2 = 15/7PS = 15/77 SPS

- Filling is achieved in a single PS2 pulse 17.4 out of 23 micros
- Extraction kicker gap corr. to ~40 unfilled 40 MHz buckets.
 - Straightforward with SPL
 - 9 (36) or 12 (48) missing bunches at injection on h=45 (180) i.e. 10 (40) MHz
 - ~140 filled 40 MHz buckets in PS2

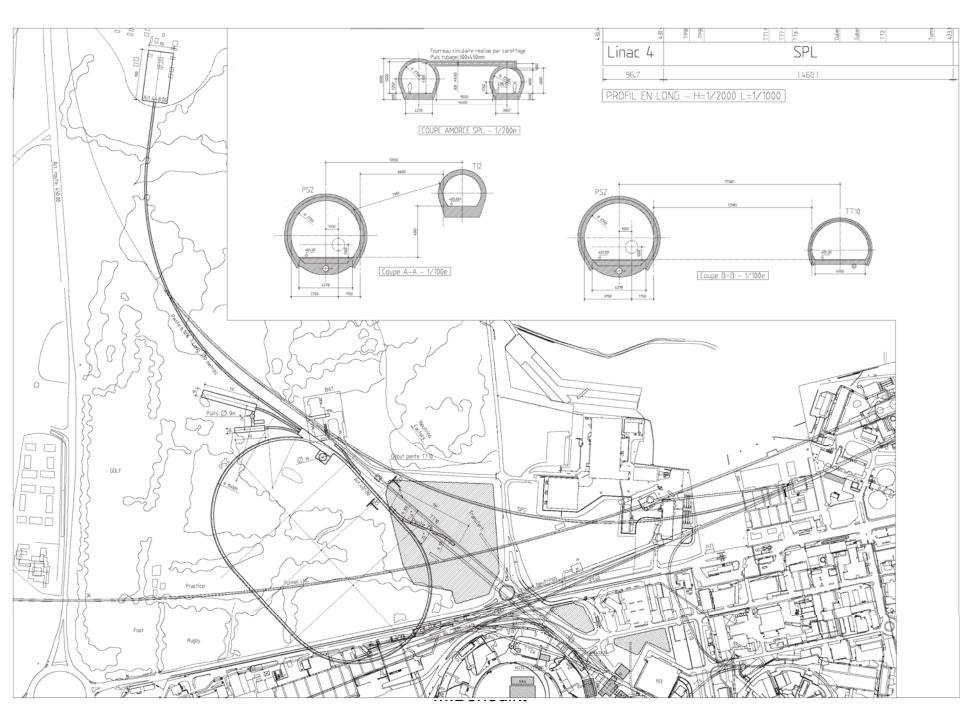
LHC beam from PS2

- Nominal bunch train at extraction (independent of rf route)
 - h=180 (40 MHz) with bunch shortening to fit SPS 200 MHz.
 - 168 buckets filled leaving a kicker gap of ~ 300 ns (50 GeV!)
 - Achieved by 42 filled buckets on h=45 (10 MHz) and 4 splittings
 - Alternatively with painting in 40 MHz directly from SPL (would allow up to 170 bunches)
 - No strong impact on LHC filling scheme (P.Collier)
- Any other bunch train pattern down to 25 ns spacing
 - Straightforward with SPL 40 MHz chopping and 40 MHz system
 - Limited to present schemes (75 ns, 1, 12, bunches etc...) with 10 MHz system and "classical" splitting.

Backup slide: LHC beam from PS2 (ii)

- Beam parameters
 - Extraction energy: 50 GeV
 - Maximum bunch intensity: 4E11 / protons per LHC bunch (25 ns)
 - Bunch length rms: 1 ns (identical to PS)
 - Transverse emittances norm. rms: 3 microm (identical to PS)
 - Longitudinal emittance varying with intensity
- Longitudinal aspects
 - Scale longit. emittance with sqrt of intensity $\varepsilon = \varepsilon_0 \sqrt{(I/I_0)}$
 - (for stability in SPS, Elena)
 - I max = 4E11 $\rightarrow \epsilon$ max = 0.35 eVs* $\sqrt{(4/1.3)}$ = 0.6 eVs
 - Momentum spread scales like emittance (bunch length = const.)
 - Scaling from nominal beam dp/p=2E-3 but @50 GeV dp/p=1E-3!
 - dp/p max = $1E-3^*\sqrt{3} = 1.8 \rightarrow$ no aperture issues
 - Voltage at PS2 extraction scales like intensity (emittance^2).
 - 3 times more voltage for shortening of the 4E11 bunch.

Back-up slide: Optics constraints for PS2 ring


1 NOIS - Nick -	MP	RIGH	Incoherent space charge tune-shift $\Delta Q_{sc} \propto \frac{N_b}{\epsilon_n \beta \gamma^2 B_f} < 0.2$
Basic beam parameters	PS	PS2	$\int charge tune-shift \qquad \overset{\Delta Q_{SC}}{\longrightarrow} \epsilon_n \beta \gamma^2 B_f \qquad \qquad$
Injection kinetic energy [GeV]	1.4	4	Improve SPS performance
Extraction kinetic energy [GeV]	13/25	50	Analysis of possible bunch patterns:
Circumference [m]	200π	1346	$C_{PS2} = (15/77) C_{SPS} = (15/7) C_{PS}$
Transition energy [GeV]	6	8-12(i)	Time for bunch splitting with 10MHz RF systems
Dipole function type	Combined	Separated	
Dipole length [m]	5	3-4	Operational flexibility and low cost
Maximum bending field [T]	1.2	1.8	antel of the
Maximum quadrupole gradient [T/m]	5	17	Normal conducting magnets
Maximum beta functions [m]	23	60	Aperture considerations for high
Maximum dispersion function [m]	3	6	intensity SPS physics beam
Minimum drift space for dipoles [m]	1	0.5	
Minimum drift space for quads [m]	1	0.8	Space considerations
Layout	Circle	Racetrack	
Maximum arc length [m]		~510	Long straight section minimum length
⁺ 24/11/2008	/	Workshop 2	008, for injection and extraction elements
\dot{H}	- M	Benedikt	

Considerations on injection energy

- Incoherent space charge tune spread at injection:
 - Scaling from PS experience: with 1.4 GeV injection energy capable of producing the ultimate LHC beam ($\Delta Q_v \sim -0.25$)

$$\Delta Q_{s.c.} \propto -\frac{N_{b}}{\epsilon_{n}} \cdot \frac{1}{\beta \gamma^{2}} \cdot \frac{1}{B_{b}}$$

- B_b... bunching factor (average / peak density for single bunch)
- B_b will decrease by factor 2.15 when putting the same bunch in a machine with 2.15 larger circumference (ΔQ prop. R)!
- PS2: 2.4 x ultimate brightness in a 2.15 larger machine
 - ~5 times larger incoherent tune spread at given energy.
 - Compensation with ratio $\beta \gamma^2$ at injection: $(\beta \gamma^2)_{PS2} \approx 5.1 \cdot (\beta \gamma^2)_{PS2}$
 - Injection energy PS2 ~ 4 GeV (ratio 4.9, for 4.2 GeV ratio 5.3)
 - Additional margin from bunching factor (PS: 150 ns / 327 ns)

Beam envelope 531

 $2.5 \sigma_v$ [m] only betatron $2.5 \sigma_x$ [m] only betatron 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.00 0.00 -0.01-0.01-0.02 -0.0-0.03 -0.04 L -0.03 L 200 1000 400 600 800 1200 1400 200 400 600 800 1000 1200 1400 $\sigma_{x,y} = (\beta_{x,y} \epsilon_{x,y,geo,cngs})^{1/2}$ $\epsilon_{x,y,norm,cngs}$ = 15/8 $\pi\mu m$