Machine-Experiment Interface

Emmanuel Tsesmelis / CERN CARE-HHH-Workshop 24 November 2008

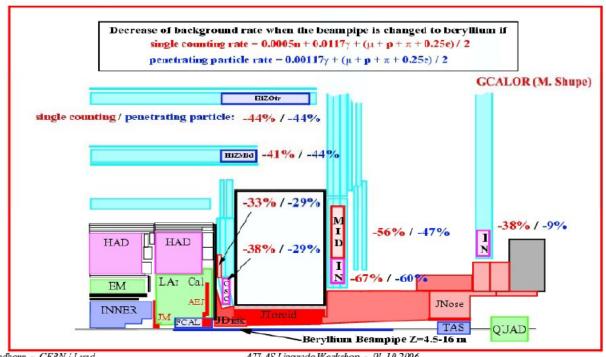
Contents

- LHC Experiments Requirements
- Experimental Vacuum System
- Collimation System
- Schedule and Final Remarks
- Conclusions

The LHC Experiments

ATLAS Spare Beam Pipe

- The ATLAS B-Layer Task Force review realised that the ATLAS beam pipe cannot be replaced in a reasonable time.
 - For example, in event of accident that would spoil the LHC vacuum.
 - ATLAS proposes to make a new spare beam pipe which can be inserted without removing the Pixel.
 - Would include Be for the central pipe and SS elsewhere.
 - This should be pursued as a matter of urgency.


ATLAS Beam Pipe

A beryllium beampipe

A beryllium beampipe is also the only way of significantly reducing the background in the muon spectrometer.

V. Hedberg - CERN / Lund

ATLAS Upgrade Workshop - 01.10.2006

7

Machine Elements in ATLAS

- D0a near ID and inside calorimeter.
- D0b just behind calorimeter.
 - Best performance with both, but
 D0b alone is significant help.
- Q0 and TAS in JT/JF shielding.

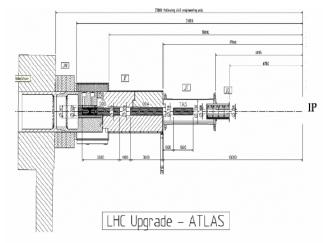
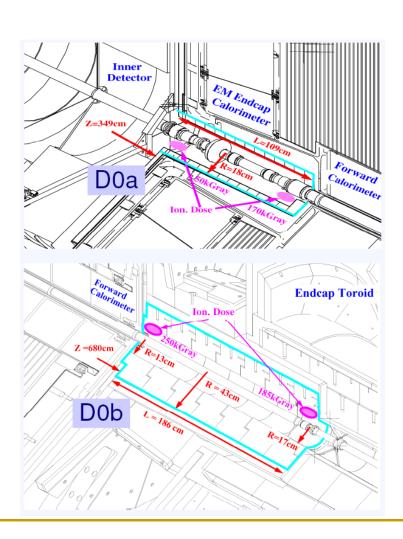



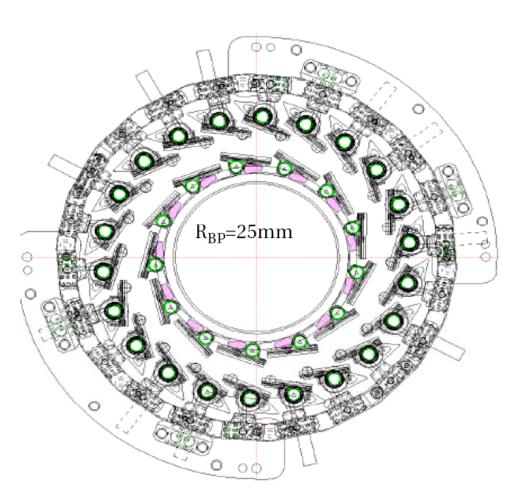
Figure 2: Integration of slim quadrupoles and TAS in the ATLAS insertion region.

Machine Elements in ATLAS

D0a

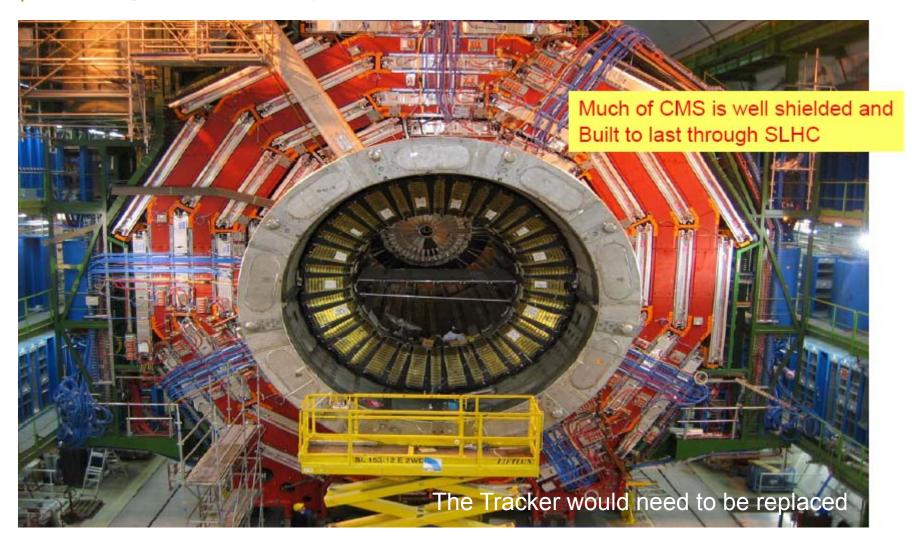
- 50% background increase in the Inner Detector.
- Destroys forward calorimetry measurement.

D0b


- Raises Muon System background by ~30% for the 300 evt/BC scenario.
- Could be acceptable, although many engineering issues to be resolved.

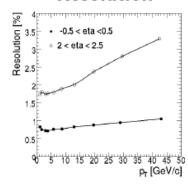
Q0 and TAS

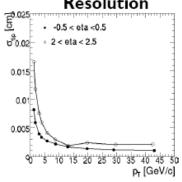
 Gives a significant increase of background in Muon System as the TAS has moved outside the heavy JF shielding into the toroid shielding JT

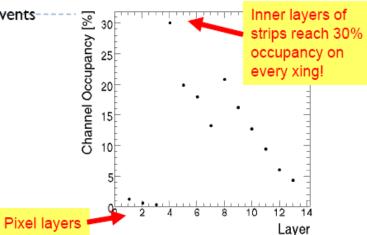

See https://edms.cern.ch/document/932316

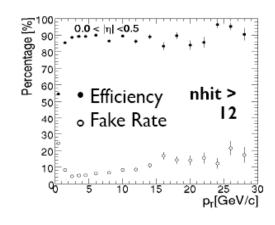
ATLAS Insertable B-Layer (IBL)

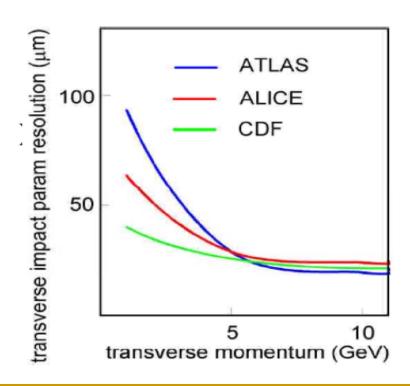
- Smaller beam pipe:
 - ▶ Is R=25 mm possible?
- Keep space for heating and shielding: 6 mm.
- Insert new B-layer into the present pixel detector in situ, with some clearance.
- Proposed by the ATLAS B-layer task force.
- Safety margin against BP movements needs even smaller BP.
- Need further discussions between ATLAS and AB.


CMS - Detector


CMS – Minimum Bias Events Tracking with 500 min Bias events


- > Study of current CMS tracker for Heavy Ion events
- Track density very similar to 50ns running
 - dn^{ch}/dη/crossing ≈ 3000
 - ▶ Tracker occupancy very high
 - Need more pixel layers/shorter strips
- Tracking possible
 - When tracks are found they are well measured
 - Efficiency and fake rate suffer
 - CPU Intensive


Momentum Resolution



ALICE - Requirements

- Smaller beam pipe diameter for better c and b tagging desired:
 - ▶ From R=2.9 cm to R=1.3 cm like at the Tevatron.
- Thinner beam pipe desired:
 - From 0.8 to 0.4 mm Be
- To be discussed with machine groups.

ALICE - Requirements

- ALICE will run at least a few weeks low-luminosity pp every year (before heavy ion runs)
 - Other LHC upgrades would need to allow for this.
- ALICE is considering a possible heavy-ion luminosity upgrade
 - To be discussed after the first heavy-ion run.

LHCb - Requirements

Running Conditions

- LHC Baseline run at 2 5 x 10³² cm⁻²s⁻¹
 - Integrated luminosity 9 fb⁻¹
 - Limitation is hadron triggger
- □ Phase-I run at 10 x 10³² cm⁻²s⁻¹
 - Integrated luminosity 25 fb⁻¹
 - Limitation is tracking efficiency (radiation)
- □ Phase-II run at 50 x 10³² cm⁻²s⁻¹
 - Integrated luminosity 110 fb⁻¹
 - Limitation is probably upgraded tracking

LHCb - Requirements

- Phase-I and Phase-II luminosity limits due to number of pp interactions per crossing.
 - Limited to a few interactions per bunch crossing by trigger and tracking.
 - Therefore, LHCb want as many crossings/sec. (25 ns.) as possible.
 - Doubling the bunch spacing (50 ns) will half the integrated luminosity.
- Additional requests
 - Luminosity leveling for high luminosities (10 x 10³² cm⁻²s⁻¹)
 - Longer luminous region

Experiment Vacuum System (© Ray Veness)

Consolidation

- ATLAS: Replace stainless steel chambers VA (& VT) and bellows with aluminium for background and ALARA reasons, prepare spare central Be beam pipe.
- LHCb: Replace defective UX85/3 Be chamber, optimise UX85/2 supports, replace stainless steel bellows with aluminium.
- CMS: Re-evaluate forward vacuum chamber supports and gas injection system operation for magnetic fields.

Upgrade

- Phase-1 Upgrade: New forward chambers in ATLAS and CMS, new TAS and/or TAS chambers, new VAX region (TAS-Q1).
- ATLAS: New Insertable B-Layer, Tracker upgrade (Be) beam pipe.
- CMS: Tracker upgrade (Be) beam pipe.
- New materials and manufacturing methods for transparent chambers.
- FP420-type forward physics moving beam pipes.
- LHC Phase–2 Upgrade concepts.

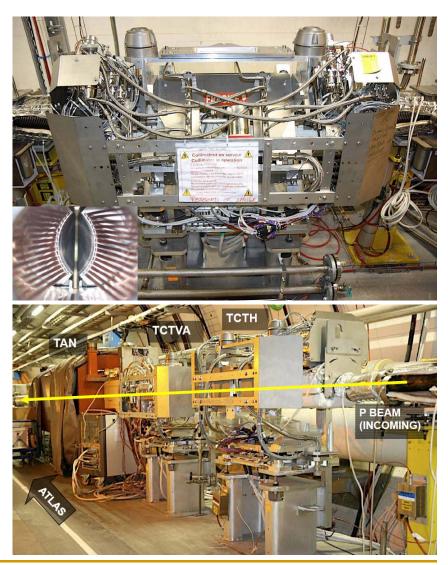
Apertures LHC Upgrade Beam Pipes

History

- ATLAS requested a smaller beam pipe diameter in Z ±3.5m for B-layer and PIXEL upgrades.
- Presentation to ATLAS Tracker Upgrade Workshop in 2006 based on aperture requirement at injection (which was the limit for the current beam pipe radius).
- A number of open questions remained to be answered (e.g., future optics and collimation) with final value expected some time after machine start-up.

Information required from ATLAS and CMS

- Formal statement needed on range of β* in IRs 1 and 5 required for physics
 - TOTEM or other high β* optics required after LHC Phase-1 Upgrade?
- Latest information on structural stability of experiment caverns.


Next steps

- Calculate baseline aperture of beam pipe in cavern, taking into account new information on triplet and collimation.
- Make detailed simulations based on beam loss, background and machine protection before agreeing final value.

Collimation System (© R. Assmann)

Collimation System

- Phase-1 graphite collimators have large contribution to machine impedance.
- Phase-2
 - Additional Cu scrapers & collimators.
 - Overall smaller impedance & 10x better cleaning.
- Phase-2 Collimators remain unchanged for LHC Triplet Upgrade.

Prediction of Beam-1 (H) Halo Losses

IR	Phase I (Perfect)	Phase I (Imperfect)	Phase II
IR1	4.9 × 10 ⁻⁴	1.0 × 10 ⁻³	7.7 × 10 ⁻⁶
IR2	1.3 × 10 ⁻⁴	2.1 × 10 ⁻⁴	2.2 × 10 ⁻⁶
IR5	6.5 × 10 ⁻⁶	5.7 × 10 ⁻⁵	2.9 × 10 ⁻⁶
IR8	3.0 × 10 ⁻⁴	7.5 × 10 ⁻⁴	5.6 × 10 ⁻⁵

- Numbers show fraction of overall loss that is intercepted at horizontal tertiary collimators in the various insertions (collimation halo load).
- Phase-2 collimation upgrade reduces losses in IRs by a factor up to 60!
- Beam-2 has opposite direction → more losses in IR5 and less in IR1!

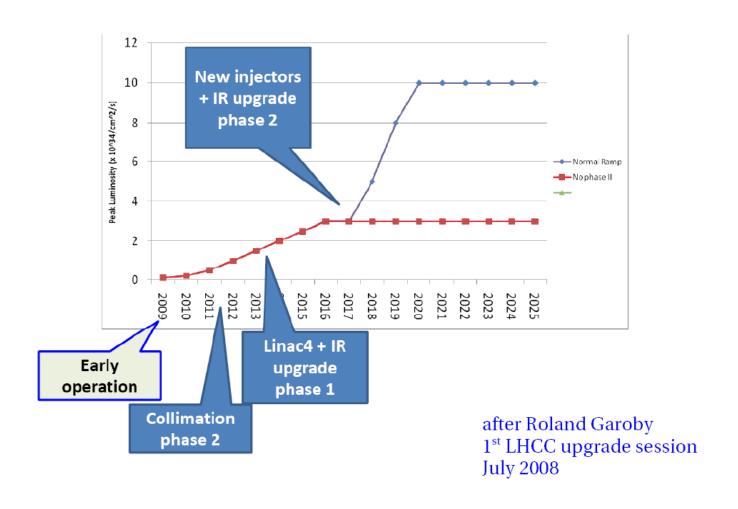
Consequences of Phase-1 Triplet Upgrade

- After the Phase-1 Triplet Upgrade we will have the same tertiary collimation. Losses can still be very different: Combination of collimation halo (collimation settings), optics and detailed aperture variation.
- Loss studies and background studies must be redone (collimators can be opened, potential losses before D2 or at TAN, more passing through Triplet, change of loss distribution between experiments, ...).

Required Beam Loss Studies for Phase-1 Triplet Upgrade

- Detailed loss studies must be performed in order to qualify the performance of any new insertion layout.
- Important workload, but we know about HERA problems with beam losses and background after the IR upgrade.
- For example, procedure for experimental beam pipe:
 - Phase-1 Triplet Upgrade: Define study optics and aperture model for Phase-1 Triplet Upgrade.
 - Experiments: Define required range of β* for each IR after upgrade (need for high β* optics?); Propose baseline for experimental beam pipe.
 - Machine: Determine maximum beam size (optics), required normalized gap (collimation) and required machine margins (optics, beam-beam, ...). This gives minimum acceptable beam pipe aperture.
 - Machine & experiments: Qualify beam loss and aperture with new baseline.

Additional Issues


- Carry out complete simulation
 - □ Proton loss map → shower simulation → experiment background
- Collimation for ions?
- Interplay between collimation around experiments (e.g. ALICE – ATLAS)

Schedule & Final Remarks

Schedule

- Machine and experiments agreed on a working model at the LHCC meeting on 1st July 2008.
- Peak luminosity evolution:
 - ▶ LHC cannot exceed 0.4 x 10³⁴ cm⁻² s⁻¹ until collimators installed and operational ~2012
 - ▶ In winter shutdown 2012-2013:
 - Switch from Linac2 to new Linac4: brighter beam, ultimate current
 - New large-aperture focusing quadrupoles: β^* from 55 cm to 25 cm
 - ▶ sLHC in 2017:
 - more injector chain improvements and or machine elements will give the potential for $>= 10^{35}$ cm⁻² s⁻¹
 - There is always a ramping time before benefitting fully from improvements

Schedule

Final Remarks

- Need an agreed and coherent schedule between experiments and machine.
- Need to find/create optimum forums to discuss LHC Upgrade machine-experiment interface issues.
 - □ e.g. LEMIC', LEB'.
 - To cover schedule, luminosity scenarios, beam structure/conditions, machine elements in the experiments, experiment beam pipes, collimation system.

Final Remarks

- Although it may still be necessary to consider several options towards the LHC Upgrade, doing so has a cost.
 - 25 ns. is worst case for experiment read-out electronics (L1 latency buffers, shapers).
 - 400 events/bunch crossing is very challenging.
 - Requires higher detector granularity.
 - Luminosity leveling remains very attractive.
 - The experiments are designing for the worst case, even if the above combination is not proposed.

Conclusions

- Interchange between machine and experiments is advancing the LHC Upgrade and must continue.
- Strengthening of the forums to discuss machineexperiment interface issues for the LHC Upgrade is needed as a matter of urgency.
- Timescales for the submission of the respective Letters of Intent, Technical Proposals and Technical Design Reports of the experiments is being determined.