# ENERGY DEPOSITION IN THE LHC HIGH LUMINOSITY INSERTIONS



F. Borgnolutti, F. Broggi, F. Cerutti, A. Ferrari, M. Mauri, A. Mereghetti, E. Todesco, E. Wildner *INFN, Milan CERN, Geneva* 

## OUTLINE

- characterization of the collision debris
- magnetic field effect
- parametric study (magnet length coil aperture triplet gradient)
- shielding solutions
- crossing scheme effect
- use of increasing apertures (shadowing)
- damage to the coils
- radiation to electronics equipment (SEE)

calculations carried out with FLUKA (using DPMJET as event generator for p+p collisions) evaluation of peak power in Nb-Ti cable relevant to *quench* made over a minimum volume of thermal equilibrium (corresponding to cable transverse dimensions and twist pitch)

#### **RADIATION FIELD FROM LHC COLLISIONS**

#### 7 TeV p + 7 TeV p

(with 225urad half crossing angle)







#### significant protection for Q1 only (and reducing backscattering to the experiments)

CARE-HHH Workshop 2008

Nov 24<sup>th</sup> F.Cerutti Energy deposition

## EFFECT OF THE TRIPLET MAGNETIC FIELD



142.5 urad half crossing angle

C. Hoa et al.,

LHC Project Report to be published

striking effectiveness in capturing debris!

CARE-HHH Workshop 2008

Nov 24<sup>th</sup> F.Cerutti Energy deposition

### PARAMETRIC STUDY

|                  |                   |                                  |                 |                     | Phase i Upgrade                             |
|------------------|-------------------|----------------------------------|-----------------|---------------------|---------------------------------------------|
| Aperture<br>(mm) | Gradient<br>(T/m) | L(Q1,Q3)<br>(m)                  | L(Q2a,b)<br>(m) | Total length<br>(m) | (L=2.5L <sub>0</sub> )                      |
| 90               | 156               | 8.69                             | 7.46            | 36.2                | 225 urad half crossing angle                |
| 115              | 125               | 9.98                             | 8.42            | 40.7                | vertical crossing                           |
| 130              | 112               | 10.81                            | 9.04            | 43.6                | 55mm TAS aperture                           |
| 140              | 104               | 11.41                            | 9.49            | 45.7                |                                             |
|                  |                   | Deak power [mW/cm <sup>3</sup> ] |                 |                     | - 90 mm<br>- 115 mm<br>- 130 mm<br>- 140 mm |
|                  |                   |                                  | Q1              | Q2a                 | Q2b Q3                                      |
|                  |                   | the                              | longer, the bet | tter                |                                             |

Phase I Ungrade

### SHIELDING OPTIONS

•ideally a continuous liner (here 3mm tungsten, green curve) is quite effective



#### **CROSSING ANGLE**

 $L=2.5L_{0}$ 



### **CROSSING SCHEME & TRIPLET CONFIGURATION**





### **USE OF INCREASING APERTURES**







#### DOSE TO THE COIL INSULATOR



### PARTICLE FLUENCE IN THE COILS

| coil aperture [mm]       | 90   | 140  |  |  |  |  |
|--------------------------|------|------|--|--|--|--|
| tracklength fraction [%] |      |      |  |  |  |  |
| photons                  | 87.0 | 86.0 |  |  |  |  |
| neutrons                 | 6.0  | 7.8  |  |  |  |  |
| electrons                | 3.5  | 3.3  |  |  |  |  |
| positrons                | 2.5  | 2.3  |  |  |  |  |
| pions                    | 0.4  | 0.4  |  |  |  |  |
| protons                  | 0.15 | 0.15 |  |  |  |  |



#### peak neutron fluence





#### >20 MeV HADRON FLUENCE IN THE TUNNEL (II) relevant to Single Event Errors



#### CONCLUSIONS

• the TAS is effective in reducing the load on Q1 (and for minimizing backscattering to the detector)

hot spot expected at the end of Q1 and on the IP-side of Q2a
the longer the triplet, the lower the peak (and integrated) power density
peaks lie on the crossing plane and change their position (up->down, outer->inner) in the Q2a

• a continuous liner inside the aperture (along the interconnections too) provides the SC cables with a substantial shield

the effectiveness of a thick beam screen in Q1 is limited to the first half of the Q2a

• the larger the crossing angle, the higher the peak power density (a magnetic TAS can play a role closing the crossing angle)

the vertical crossing is more harmful for the downstream elements (the coil azimuthal position - wrt the crossing plane – is critical)

• effective shadowing can be obtained by the use of increasing apertures (large aperture SC D1 planned for the Upgrade Phase I)

- ~400 W the triplet toal load + ~100 W in the beam screen (about one half in the Q1 liner) for L= $2.5L_0$
- localized peak dose in the coils has to be considered wrt the insulator robustness

radiation tolerance of electronics in the tunnel and shielded areas nearby must be assured
CARE-HHH Workshop 2008 Nov 24<sup>th</sup> F.Cerutti Energy deposition

#### ACKNOWLEDGEMENTS

M. Brugger P. Fessia M. Fuerstner C.Hoa M. Karppinen G. Kirby J.P. Koutchouk P. Limon J. Miles D. Nisbet R. Ostojic H. Prin C. Rathjen **V.Vlachoudis**