ENERGY DEPOSITION

IN THE LHC HIGH LUMINOSITY INSERTIONS

F. Borgnolutti, F. Broggi, F. Cerutti, A. Ferrari,
M. Mauri, A. Mereghetti, E. Todesco, E. Wildner
INFN, Milan CERN, Geneva

OUTLINE

- characterization of the collision debris
- magnetic field effect
- parametric study (magnet length - coil aperture - triplet gradient)
- shielding solutions
- crossing scheme effect
- use of increasing apertures (shadowing)
- damage to the coils
- radiation to electronics equipment (SEE)
calculations carried out with FLUKA (using DPMJET as event generator for $p+p$ collisions)
evaluation of peak power in Nb -Ti cable relevant to quench made over a minimum volume of thermal equilibrium (corresponding to cable transverse dimensions and twist pitch)

RADIATION FIELD FROM LHC COLLISI ONS

7 TeV p + 7 TeV p
(with 225urad half crossing angle)


```
Phase I Upgrade
( \(L=2.5 \mathrm{~L}_{0}\) )
55mm TAS aperture -> 130mm triplet coil aperture peak power \(114 \mathrm{~mW} / \mathrm{cm}^{3}\) total power 325 W (out of 2240 W )
45mm TAS aperture -> 110mm triplet coil aperture peak power \(180 \mathrm{~mW} / \mathrm{cm}^{3}\) total power 385 W (out of 2240 W )
\[
\Delta r=1 \mathrm{~cm} \times \Delta \varphi=2^{\circ} \times \Delta z=2 \mathrm{~cm} \text { scoring grid }
\]
```

```
    present LHC
    (L=L
34mm TAS aperture
            peak power }110\textrm{mW}/\mp@subsup{\textrm{cm}}{}{3
                    total power 184 W (out of 896 W) LHC Project Report 633
```

significant protection for Q1 only (and reducing backscattering to the experiments)

EFFECT OF THE TRIPLET MAGNETIC FIELD

striking effectiveness in capturing debris!

SHIELDING OPTIONS

- ideally a continuous liner (here 3mm tungsten, green curve) is quite effective

- as an alternative, a thick liner in Q1 (here 13 mm stainless steel,

130 mm coil aperture

CROSSING ANGLE

$\mathrm{L}=2.5 \mathrm{~L}_{0}$
Settings: Extra shielding: 13mm AISI (ONLY in Q1 and QC) - QC field ON

CROSSI NG SCHEME \& TRI PLET CONFIGURATION

COLLISION DEBRIS EVOLUTION

USE OF INCREASING APERTURES

TOTAL POWER LOAD

vertical crossing

GLOBAL VIEW ON THE TAS-D2 REGI ON

vertical plane

DOSE TO THE COIL INSULATOR

PARTICLE FLUENCE IN THE COI LS

coil aperture [mm]	90	140	over the inner cable ${ }^{0 \times 45}$	
tracklength f	ction			
photons	87.0	86.0	005	
neutrons	6.0	7.8	${ }_{0}^{085}$	-
electrons	3.5	3.3	㽭 002	-
positrons	2.5	2.3	001	,
pions	0.4	0.4	0.005	
protons	0.15	0.15		${ }^{E / G O N} 1 \mathrm{M}$

peak neutron fluence

>20 MeV HADRON FLUENCE I N THE TUNNEL (I)

 relevant to Single Event Errorsin fact $510^{8} \mathrm{~cm}^{-2} / 100 \mathrm{fb}^{-1}$
due to the ATLAS detector
510^{7} - $510^{\mathbf{8}} \mathbf{c m}^{-2} / 100 \mathrm{fb}^{-1}$

$>20 \mathrm{MeV}$ HADRON FLUENCE IN THE TUNNEL (II)

relevant to Single Event Errors

in UJ 56, after a 2 m concrete shielding, high energy hadron fluence at beam level ranging from 1.310^{9} up to $1.310^{10} \mathbf{~ c m}^{-2} / 100 \mathrm{fb}^{-1}$

CONCLUSI ONS

- the TAS is effective in reducing the load on Q1 (and for minimizing backscattering to the detector)
- hot spot expected at the end of Q1 and on the IP-side of Q2a
the longer the triplet, the lower the peak (and integrated) power density
peaks lie on the crossing plane and change their position (up->down, outer->inner) in the Q2a
- a continuous liner inside the aperture (along the interconnections too) provides the SC cables with a substantial shield
the effectiveness of a thick beam screen in Q1 is limited to the first half of the Q2a
- the larger the crossing angle, the higher the peak power density (a magnetic TAS can play a role closing the crossing angle)
the vertical crossing is more harmful for the downstream elements (the coil azimuthal position - wrt the crossing plane - is critical)
- effective shadowing can be obtained by the use of increasing apertures (large aperture SC D1 planned for the Upgrade Phase I)
- $\sim 400 \mathrm{~W}$ the triplet toal load $+\sim 100 \mathrm{~W}$ in the beam screen (about one half in the Q1 liner) for $\mathrm{L}=2.5 \mathrm{~L}_{0}$
- localized peak dose in the coils has to be considered wrt the insulator robustness
- radiation tolerance of electronics in the tunnel and shielded areas nearby must be assured

ACKNOWLEDGEMENTS

M. Brugger
P. Fessia
M. Fuerstner
C. Hoa
M. Karppinen
G. Kirby
J.P. Koutchouk
P. Limon
J. Miles
D. Nisbet
R. Ostojic
H. Prin
C. Rathjen
V.Vlachoudis

