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… from the previous lesson
• FPGA fabric (matrix like structure) made of:

• Logic cells

• Interconnect network between logic resources

• I/O-cells to communicate with outside world

o Look-Up-Table (LUT) to implement combinatorial logic
o Flip-Flops (D) to implement sequential logic

• Clock tree to distribute the clock signals
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… from the previous lesson
• But it also features Hard Blocks:

Example of FPGA architecture
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Key concepts about FPGA design
FPGA gateware (firmware) design is NOT programming
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Key concepts about FPGA design
FPGA gateware (firmware) design is NOT programming

• Programming
• Code is written and translated into instructions
• Instructions are executed sequentially by the CPU(s)

Sequential
Processing

Parallel
Processing

• Parallelism is achieved by running instructions on multiple threads/cores
• Processing structures and instructions sets are fixed by the architecture of the system

• FPGA gateware (firmware) design
• No fixed architecture, the system is built according to the task
• Building is done by describing/defining system  elements and their relations

vs.

• Intrinsically parallel, sequential behaviour is achieved by registers and Finite-State-Machines (FSMs)

• Description done by schematics or a hardware description language (HDL)
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Key concepts about HDL
HDL are used for describing HARDWARE
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Key concepts about HDL
HDL are used for describing HARDWARE

• Example of a WAIT statement (Programming Language VS. HDL)
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Key concepts about HDL
HDL are used for describing HARDWARE

• Example of a WAIT statement (Programming Language VS. HDL)
• In programming language (e.g. C) (Unix, #include <unistd.h>)

• In HDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)

o Synthesizable (for simulation and/or FPGA implementation)

sleep(5); // sleep 5 seconds



A design abstraction which models a synchronous digital circuit in terms of 
the flow of digital signals (data) between registers and logical operations 
performed on those signals

http://en.wikipedia.org/wiki/Register-transfer_level
Register Transfer Level (RTL)
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Key concepts about HDL
Timing in FPGA gateware (firmware) design is critical
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Key concepts about HDL
Timing in FPGA gateware (firmware) design is critical

• Data propagates in the form of electrical signals through the FPGA 

Synthesized RTL (Netlist) is implemented into FPGA 
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Key concepts about HDL
Timing in FPGA gateware (firmware) design is critical

• Data propagates in the form of electrical signals through the FPGA 

• If these signals do not arrive to their destination on time…

The consequences may be catastrophic!!!

Synthesized RTL (Netlist) is implemented into FPGA 



When designing FPGA gateware (firmware) you 
have to think HARD… 
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Key concepts about HDL
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Key concepts about HDL

WARE
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FPGA gateware (firmware) design work flow

ImplementationConstraints
(Physical 
& Timing)

` In-System
Debugging

Project
Specification

Design Entry

Synthesis

Static Timing Analysis

Bitstream Generation
& FPGA Programming

Behavioural Simulation

Functional Simulations
(Post-Synthesis

or 
Post-Implementation)

Timing Simulation
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!• Gather requirements from the users
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!

Example of General Purpose Gateware

• Specify:
• Gather requirements from the users

• Target application (Specific or General purpose)
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!

Example of Application Specific Gateware

• Gather requirements from the users

• Target application (Specific or General purpose)

• Specify:
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!

Example of FPGA Architecture

• Gather requirements from the users

• Target application (Specific or General purpose)
• Main features (e.g. System bus, Multi-gigabit transceivers, etc.)

• Specify:



31

Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!

Small FPGA vendors may target specific markets 
(e.g. Microsemi offers high reliable FPGAs, etc..)

• Gather requirements from the users

• Target application (Specific or General purpose)

• FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)
• Main features (e.g. System bus, Multi-gigabit transceivers, etc.)

• Specify:
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!
Example of COST board (Xilinx Devkit)

Example of Custom Board

• Gather requirements from the users

• Target application (Specific or General purpose)

• FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

• Specify:

(*) Commercial off-the-shelf (COTS)

• Electronic board (Custom or COST (*))

• Main features (e.g. System bus, Multi-gigabit transceivers, etc.)
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!

Example of FPGA Vendor Tools

Example of Commercial Tools

• Gather requirements from the users

• Target application (Specific or General purpose)

• FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

• Development tools (FPGA vendor or Commercial)

• Specify:

• Electronic board (Custom or COST (*))

• Main features (e.g. System bus, Multi-gigabit transceivers, etc.)
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!• Gather requirements from the users

• Target application (Specific or General purpose)

• Optimization (Speed, Area, Power or default)

• FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

• Development tools (FPGA vendor or Commercial)

• Specify:

• Electronic board (Custom or COST (*))

• Main features (e.g. System bus, Multi-gigabit transceivers, etc.)
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Project Specification
FPGA gateware (firmware) design work flow
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• FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

• Development tools (FPGA vendor or Commercial)

• Specify:

• Electronic board (Custom or COST (*))

• Main features (e.g. System bus, Multi-gigabit transceivers, etc.)



36

Project Specification
FPGA gateware (firmware) design work flow
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Project Specification
FPGA gateware (firmware) design work flow
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!

HDL are the most popular for RTL design
but…

Schematics may be better in some cases
(e.g. Embedded Processor configuration, 

etc..)

• Gather requirements from the users

• Target application (Specific or General purpose)

• Optimization (Speed, Area, Power or default)

• FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

• Development tools (FPGA vendor or Commercial)

• Design language (Schematics or HDL (e.g. VHDL, etc.))

• Specify: Examples of Design Languages

• Electronic board (Custom or COST (*))

• Main features (e.g. System bus, Multi-gigabit transceivers, etc.)
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!

Example of Coding Convention 

Your code 
should be 
readable

• Gather requirements from the users

• Target application (Specific or General purpose)

• Optimization (Speed, Area, Power or default)

• FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

• Development tools (FPGA vendor or Commercial)

• Design language (Schematics or HDL (e.g. VHDL, etc.))
• Coding convention

• Specify:

• Electronic board (Custom or COST (*))

• Main features (e.g. System bus, Multi-gigabit transceivers, etc.)
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!• Gather requirements from the users

• Target application (Specific or General purpose)

• Optimization (Speed, Area, Power or default)

• FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

• Development tools (FPGA vendor or Commercial)

• Software interface (GUI, Scripts or both)

Example of GUIs

Example of TCL script

• Design language (Schematics or HDL (e.g. VHDL, etc.))
• Coding convention

Xilinx ISE TCL console

• Specify:

• Electronic board (Custom or COST (*))

• Main features (e.g. System bus, Multi-gigabit transceivers, etc.)
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!

• Use of files repository (SVN, GIT, etc.. or none)

• Gather requirements from the users

• Target application (Specific or General purpose)

• Optimization (Speed, Area, Power or default)

• FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

• Development tools (FPGA vendor or Commercial)

• Software interface (GUI, Scripts or both)

• Design language (Schematics or HDL (e.g. VHDL, etc.))
• Coding convention

• Specify:

• Electronic board (Custom or COST (*))

• Main features (e.g. System bus, Multi-gigabit transceivers, etc.)
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!• Block diagram of the system

Example of system block diagram

• Include the FPGA logic…

• May combine different abstraction levels
• … but also the on-board devices and related devices



• Pin planning
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Project Specification
FPGA gateware (firmware) design work flow

The rest of the design process is based on it!!!

Critical for 
Custom Boards!!!

Pin assignments are one type 
of Location Constraints

Example of Pin Planner GUI
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Design Entry
FPGA gateware (firmware) design work flow
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Design Entry: Modularity & Reusability
FPGA gateware (firmware) design work flow

• Your system should be Modular

• Your code should be Reusable

• Well defined clocks and resets schemes
• Separated Data & Control paths
• Multiple instantiations

• Use parameters in your code (e.g. generics in VHDL, parameters in Verilog, etc.)

• Use configurable modules interfaces when possible (e.g. parametrised vectors, records in VHDL, etc.) 

• Avoid vendor specific IP Cores when possible

• Centralise parameters in external files (e.g. packages in VHDL, headers in Verilog, etc.)

• Use standard features (e.g. I2C, Wishbone, etc.)
• Use standard IP Cores (e.g. from www.OpenCores.org, etc.)

• Talk with your colleagues and see what other FPGA designers are doing

Pattern 
Generator

8-bit Counter

RAM
256x16-bit

Increment

Data

Data Valid Flag

Address

Write Enable

Data

Reset

ResetReset

Reset

Clock

16-bit

8-bit

Good example of Modular System
• Design at RTL level (think hard…ware)

• Add primitives (and modules) to the system by inference when possible
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Design Entry: Coding for Synthesis
FPGA gateware (firmware) design work flow

• Use non-synthesizable HLD  statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures 
and directives that could potentially create a mismatch between simulation and synthesis.
From book “Advanced FPGA Design” by Steve Kilts (Copyright © 2007 John Wiley & Sons, Inc.)

Synthesizable code is intended for 
FPGA implementation 
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Design Entry: Coding for Synthesis
FPGA gateware (firmware) design work flow

• Use non-synthesizable HLD  statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures 
and directives that could potentially create a mismatch between simulation and synthesis.
From book “Advanced FPGA Design” by Steve Kilts (Copyright © 2007 John Wiley & Sons, Inc.)

Synthesizable code is intended for 
FPGA implementation 

• The RTL synthesis tool is expecting a synchronous design…
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Design Entry: Coding for Synthesis
FPGA gateware (firmware) design work flow

• Use non-synthesizable HLD  statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures 
and directives that could potentially create a mismatch between simulation and synthesis.
From book “Advanced FPGA Design” by Steve Kilts (Copyright © 2007 John Wiley & Sons, Inc.)

Synthesizable code is intended for 
FPGA implementation 

But what is a synchronous design???

• The RTL synthesis tool is expecting a synchronous design…
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Design Entry: Coding for Synthesis
FPGA gateware (firmware) design work flow

• Use non-synthesizable HLD  statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures 
and directives that could potentially create a mismatch between simulation and synthesis.
From book “Advanced FPGA Design” by Steve Kilts (Copyright © 2007 John Wiley & Sons, Inc.)

Synthesizable code is intended for 
FPGA implementation 

Synchronous design is the one compose by combinatorial logic (e.g. logic gates, multiplexors, etc..) and 
sequential logic (registers that are triggered on the edge of a single clock),

Combinatorial Logic Sequential Logic Synchronous design

+ =

FPGA design tools only analyse synchronous designs!!!

• The RTL synthesis tool is expecting a synchronous design…
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Design Entry: Coding for Synthesis
FPGA gateware (firmware) design work flow

• Combinatorial logic coding rules
• Sensitivity list must include ALL input signals

• ALL output signals must be assigned under ALL possible input conditions

• No feedback from output to input signals
Not respecting this may lead to unknown output states (metastability) & undesired latches

Not respecting this may lead to undesired latches (asynchronous storage element)

Not respecting this may lead to non responsive outputs under changes of input signals

Bad combinatorial coding for synthesisGood combinatorial coding for synthesis

Asynchronous Latch
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Design Entry: Coding for Synthesis
FPGA gateware (firmware) design work flow

• Sequential logic coding rules
• Only clock signal (and asynchronous set/reset signals when used) in sensitivity list

• All registers of the sequence must be triggered by the same clock edge (either Rising or Falling)

Not respecting this may produce undesired combinatorial logic 

Not respecting this may lead to metastability at the output of the registers
• Include all registers of the sequence in the same reset branch

Not respecting this may lead to undesired register values after reset

Good sequential coding for synthesis Bad sequential coding for synthesis
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Design Entry: Coding for Synthesis
FPGA gateware (firmware) design work flow

• Synchronous design coding rules:

• Register ALL output signal
Not respecting this may lead to uncontrolled length of combinatorial paths

Not respecting this may lead to undesired register values after reset

• FULLY synchronous design

Not respecting this may lead to incorrect analysis from the FPGA design tool

o No combinatorial feedback
o No asynchronous latches

• Properly design of reset scheme (mentioned later)

Not respecting this may lead to metastability at the output of the registers & Misuse of resources
• Properly design of clocking scheme (mentioned later)

Not respecting this may lead to metastability at the output of the registers 
• Properly handle Clock Domain Crossings (CDC) (mentioned later)
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FPGA gateware (firmware) design work flow

• Finite State Machines (FSMs):

Design Entry: Coding for Synthesis

• Two variants of FSM
o Moore: Outputs depends only on the current state of the FSM

• Digital logic circuit with a finite number of internal states
• Widely used for system control

o Mealy:  Outputs depends only on the current state of the FSM as well as the current values of the inputs

• Modelled by State Transition Diagrams

• Many different FSM coding styles (But not all of the are good!!)
• FSM coding considerations:

o Synchronize inputs & outputs

o Be careful with unreachable/illegal states
o Outputs may be assigned during states or state transitions

o You can add counters to FSMs



o No Reset Scheme
Pros; Easier Routing, Less resources, Easiest timing closure
Cons: Only reset at power up (in some devices not even that…) 
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Design Entry: Reset Scheme
FPGA gateware (firmware) design work flow

• It has a direct impact on:

• Different approaches:

<- In fact, reset is not always needed

• Performance
• Logic utilization
• Reliability

• Different opinions due to…

o Asynchronous

• Used to initialize the output of the registers to a know state

o Synchronous

o Hybrid: Usually in big designs (Avoid when possible!!!)  

Pros: No free running clock required, easier timing closure
Cons: skew, glitches, simulation mismatch, difficult to debug, extra constraints, etc.

Pros: No Skew, No Glitches, No simulation mismatch, Easier to debug, No extra constraints, etc..
Cons: Free-running clock required, More difficult timing closure

A bad reset scheme may get you crazy!!!
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Design Entry: Reset Scheme
FPGA gateware (firmware) design work flow

• It has a direct impact on:

• Different approaches:

<- In fact, reset is not always needed

• Performance
• Logic utilization
• Reliability

• Different opinions due to…

o Asynchronous

• Used to initialize the output of the registers to a know state

o Synchronous

o Hybrid: Usually in big designs (Avoid when possible!!!)  

Pros: No free running clock required, easier timing closure
Cons: skew, glitches, simulation mismatch, difficult to debug, extra constraints, etc.

Pros: No Skew, No Glitches, No simulation mismatch, Easier to debug, No extra constraints, etc..
Cons: Free-running clock required, More difficult timing closure

My advise is…
You should use 

SYNCHRONOUS RESET
by default

A bad reset scheme may get you crazy!!!
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FPGA gateware (firmware) design work flow

• Other FPGA clocking resources

• Bad practices when designing your clocking scheme

Design Entry: Clocks Scheme

Gated clocks Derived clocks

• Clock regions

• Clock capable pins
• Clock buffers

• PLLs & DCM

Never use these clocks 
in your system!!!

• Clock Multiplexors
Global clock tree

Local clock tree

Clock Regions

FF

FF

Comb

CLK

• Clock trees (Global & Local)



Design Entry: Timing
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FPGA gateware (firmware) design work flow

• Sampling

Tsu: Set Up Time
Th:   Hold Time

DATA[0] DATA[1]

Clock
Tsu Th

Sampling
Point

No Stable Data
(Metastable Area)
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FPGA gateware (firmware) design work flow
Design Entry: Timing

• Clock Domain Crossing (CDC)
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FPGA gateware (firmware) design work flow
Design Entry: Timing

• Clock Domain Crossing (CDC)
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FPGA gateware (firmware) design work flow
Design Entry: Timing

Avoid creating unnecessary clock domains

• Clock Domain Crossing (CDC): The problem…

Signal violates the setup-time of FlipFlop B clocked by Clk B
Bout becomes metastable and then settles at either at ‘1’ or ‘0’

• Clock Domain Crossing (CDC) : passing a signal from one clock domain to another (A to B)
• If clocks are unrelated to each other (asynchronous) timing analysis is not possible
• Setup and Hold times of FlipFlop B are likely to be violated -> Metastability!!!



Design Entry: Timing
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FPGA gateware (firmware) design work flow

• Clock Domain Crossing: The workaround…



Design Entry: Timing
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FPGA gateware (firmware) design work flow

• Clock Domain Crossing: The workaround…

• Control Paths:
Handshaking DPRAM

Din

Wr Addr Rd Addr

Wr Clk Rd Clk

Wr En Rr En

Dout

‘1’ ‘1’

[0...0][0...0]

Synchronizers



Design Entry: Timing
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FPGA gateware (firmware) design work flow

• Clock Domain Crossing: The workaround…

• Control Paths:

• Data Paths:

Handshaking DPRAM
Din

Wr Addr Rd Addr

Wr Clk Rd Clk

Wr En Rr En

Dout

‘1’ ‘1’

[0...0][0...0]

Synchronizers

Handshaking

Asynchronous
FIFO

Din

Wr Clk Rd Clk

Wr En Rr En

Dout

Full Empty

Be aware of FIFO overflow/underflow!!!



Design Entry: Timing
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FPGA gateware (firmware) design work flow

• Clock Domain Crossing: The workaround…

• Control Paths:

• Data Paths:

Handshaking DPRAM
Din

Wr Addr Rd Addr

Wr Clk Rd Clk

Wr En Rr En

Dout

‘1’ ‘1’

[0...0][0...0]

Synchronizers

Handshaking

Asynchronous
FIFO

Din

Wr Clk Rd Clk

Wr En Rr En

Dout

Full Empty

Be aware of FIFO overflow/underflow!!!• Control & Data Paths:

Pros: Low & deterministic latency
Cons: Same clock source, frequency an integer

multiple & calibration required

Phase alignment



Design Entry: Primitives & IP Cores
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FPGA gateware (firmware) design work flow

• Hard IP Cores: Complex hardware blocks embedded into the FPGA

• Fixed I/O location

• Soft IP Cores: Complex (or simple) modules ready to be implemented

• Vendor (and device) specific

• They may be vendor specific or agnostic:
o Vendor Specific: Encrypted Code or Requires Hard IP Core 
o Vendor Agnostic: Commercial or Open Source (www.OpenCores.org)

• Primitives: Basic components of the FPGA

• Examples: Buffers (I/O & Clock), Registers, BRAMs, DSP blocks, Logic Gates (programed LUTs)
• Vendor (and device) specific

• In many cases they may be set through GUI (Wizards)

• Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessors, etc..

• Examples: : All kind of modules
• In many cases they may be set through GUI (Wizards)

• Two ways of adding Primitives & IP Cores to your system:

• Inference: The module is IMPLICITELLY added to the system 
• Instantiation: The module is EXPLICITELLY added to the system 

Instantiated FlipFlop
(for Microsemi ProAsic3)

Inferred FlipFlop (Verilog)
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FPGA gateware (firmware) design work flow

• Hard IP Cores: Complex hardware blocks embedded into the FPGA

• Fixed I/O location

• Soft IP Cores: Complex (or simple) modules ready to be implemented

• Vendor (and device) specific

• They may be vendor specific or agnostic:
o Vendor Specific: Encrypted Code or Requires Hard IP Core 
o Vendor Agnostic: Commercial or Open Source (www.OpenCores.org)

• Primitives: Basic components of the FPGA

• Examples: Buffers (I/O & Clock), Registers, BRAMs, DSP blocks, Logic Gates (programed LUTs)
• Vendor (and device) specific

• In many cases they may be set through GUI (Wizards)

• Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessors, etc..

• Examples: : All kind of modules
• In many cases they may be set through GUI (Wizards)

• Two ways of adding Primitives & IP Cores to your system:

• Inference: The module is IMPLICITELLY added to the system 
• Instantiation: The module is EXPLICITELLY added to the system 

Instantiated FlipFlop
(for Microsemi ProAsic3)

Inferred FlipFlop (Verilog)
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FPGA gateware (firmware) design work flow

• Hard IP Cores: Complex hardware blocks embedded into the FPGA

• Fixed I/O location

• Soft IP Cores: Complex (or simple) modules ready to be implemented

• Vendor (and device) specific

• They may be vendor specific or agnostic:
o Vendor Specific: Encrypted Code or Requires Hard IP Core 
o Vendor Agnostic: Commercial or Open Source (www.OpenCores.org)

• Primitives: Basic components of the FPGA

• Examples: Buffers (I/O & Clock), Registers, BRAMs, DSP blocks, Logic Gates (programed LUTs)
• Vendor (and device) specific

• In many cases they may be set through GUI (Wizards)

• Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessors, etc..

• Examples: : All kind of modules
• In many cases they may be set through GUI (Wizards)

• Two ways of adding Primitives & IP Cores to your system:

• Inference: The module is IMPLICITELLY added to the system 
• Instantiation: The module is EXPLICITELLY added to the system 

Instantiated FlipFlop
(for Microsemi ProAsic3)

Inferred FlipFlop (Verilog)



Synthesis
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FPGA gateware (firmware) design work flow

• The FPGA design tool optimizes the design during synthesis

• What does it do?

• Defines the connection of these elementary functions
• Translates the schematic or HDL code into elementary logic functions

• Uses Boolean Algebra and Karnaugh maps to optimize logic functions

It may do undesired changes to the system (e.g. remove modules, change signal names, etc.)!!!

• Always check the synthesis report

• And also check the RTL/Technology viewers

• Warnings & Errors

• Optimizations
• Estimated resource utilization

• And more…

Example of RTL Schematic

Example of Synthesis Report



• For a reliable system, the timing requirements for all paths must be provided to the FPGA design tool.

• To efficiently specify these constraints:

• The most common types of path categories include:
• Input paths

• Output paths

• Register-to-register paths (combinatorial paths)

• Path specific exceptions (e.g. false path, multi-cycle paths, etc.) 

1) Begin with global constraints (in many cases with this is enough)

2) Add path specific exceptions as needed

• Over constraining will difficult the routing

Constraints: Timing

69

FPGA gateware (firmware) design work flow

Example of timing constraint (Xilinx .ucf)

• Provided through constraint files (e.g. Xilinx .XDC, etc..) or GUI (that creates/writes constraint files).



Constraints: Physical
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FPGA gateware (firmware) design work flow

• Pin planning

• Floorplanning

As previously mentioned…
You should do Pin Planning 
during Specification Stage

Floorplanning may improve routing times and allow 
faster system speeds…

• Try to avoid routing across the chip
• Place the Hard IP cores, the related logic will follow

• Try to place logic close to their related I/O pins

• You can separate the logic by areas (e.g. Xilinx Pblocks)

but too much will difficult the routing!!!



• The FPGA design tool:
1) Translates the Timing and Physical constraints in order to guide the implementation

Implementation
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FPGA gateware (firmware) design work flow

• The FPGA design tool may be set for different optimizations (Speed, Area, Power or default)

• Physical Placement & Timing change after re-implementing (use constraints to minimize these changes)

2) Maps the synthesized netlist:

3) Places and Routes (P&R) the mapped netlist: 

o Logic elements to FPGA logic cells

o Hard IP Cores to FPGA hard blocks
o Verifies that the design can fit the target device

o Physical placement of the FPGA logic cells

o Routing of the signals through the interconnect network & clock tree
o Physical placement of the FPGA hard blocks

• You should always check the different reports generated during implementation



Static Timing Analysis
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FPGA gateware (firmware) design work flow

• The FPGA design tool analyses the signals propagation delays and clock relationships after P&R
• A timing report is generated, including the paths that did not meet the timing requirements

• The timing closure flow:

• Setup violations: Too long combinatorial paths
• Rule of thumb for timing violations:

• Hold violations: Issue with CDC and/or Path specific exceptions



Static Timing Analysis
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FPGA gateware (firmware) design work flow

• The FPGA design tool analyses the signals propagation delays and clock relationships after P&R
• A timing report is generated, including the paths that did not meet the timing requirements

• The timing closure flow:

• Setup violations: Too long combinatorial paths
• Rule of thumb for timing violations:

• Hold violations: Issue with CDC and/or Path specific exceptions



Bitstream Generation & FPGA Programming
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FPGA gateware (firmware) design work flow

• Binary file containing the FPGA configuration data 

• Bitstream is loaded into the FPGA through JTAG
• Configuration data may be stored in on-board FLASH and loaded by the FPGA at power up

• Bitstream:

• FPGA programming:

• Each FPGA vendor has its own bitstream file extension (e.g. .bit (Xilinx), .sof (Altera) )

• Multiboot/Safe FPGA configuration
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FPGA gateware (firmware) design work flow

• Binary file containing the FPGA configuration data 

• Bitstream is loaded into the FPGA through JTAG
• Configuration data may be stored in on-board FLASH and loaded by the FPGA at power up

• Bitstream:

• FPGA programming:

• Each FPGA vendor has its own bitstream file extension (e.g. .bit (Xilinx), .sof (Altera) )

• Multiboot/Safe FPGA configuration

Multiboot/Safe FPGA configuration diagrams



Simulation
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FPGA gateware (firmware) design work flow

• HDL simulators:
• Most popular: Modelsim
• Other simulators: Vivado Simulator (Xilinx), Icarus Verilog (Open-source), etc.. 

• Different levels of simulation

• Event-based simulation to recreate the parallel nature of digital designs
• Verification of HDL modules and/or full systems

• Behavioural: simulates only the behaviour of the design
• Functional: uses realistic functional models for the target technology

• Timing : most accurate. Uses Implemented design after timing analysis 
Slow
Fast

Very Slow

Example of simulator wave window



In-System Analysers & Virtual I/Os
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FPGA gateware (firmware) design work flow

• Your design is up… and also running?

• Can be embedded into the design and controlled by JTAG
• Most FPGA vendors provide in-system analyzers & virtual I/Os

• Allow monitoring but also control of the FPGA signals

• Minimize interfering with the your system by:

• It is useful to spy inside the FPGA… but the issue may come form the rest of the board!!!
• Remember… it is HARDWARE

Placing extra registers between the monitored signals and the In-System Analyser 

Example of In-System Analyser (Altera SignalTap II)
Example of Virtual I/Os (Xilinx VIO)



Debugging Techniques
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FPGA gateware (firmware) design work flow
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FPGA gateware (firmware) design work flow

Divide & Conquer
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FPGA gateware (firmware) design work flow

Divide & Conquer
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Data

Data Valid Flag

Address

Write Enable
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Reset

Clock

16-bit

8-bit
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FPGA gateware (firmware) design work flow
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FPGA gateware (firmware) design work flow
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FPGA gateware (firmware) design work flow

Divide & Conquer

Follow the chain

Open the box
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RAM
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Increment

Data
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Write Enable
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16-bit
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We are debugging HARDWARE!!!



After debugging…
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FPGA gateware (firmware) design work flow
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FPGA gateware (firmware) design work flow



After debugging…
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FPGA gateware (firmware) design work flow



After debugging…
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FPGA gateware (firmware) design work flow

• Documentation



After debugging…
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FPGA gateware (firmware) design work flow

• Maintenance

• Documentation



After debugging…
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FPGA gateware (firmware) design work flow

• Maintenance

• … and maybe User Support

• Documentation



• Summary

BE‐BI‐QP

ISOTDAQ 2016 @ Rehovot (Israel)
29/01/2016

Manoel Barros Marin
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Summary

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing – hence "field-programmable".

• FPGA gateware (firmware) design flow
• Plan, plan and plan again

• Coding for synthesis

• Read the reports (Synthesis, Implementation & Static Timing Analysis)
• Optimize in your code but also with constraints and FPGA design tool options

• Modular and reusable system

• Take care of your resets and clocks schemes
• Clock Domain Crossing is tricky  
• You must properly constraint your design

• Key concepts about FPGA design
• FPGA gateware (firmware) design is NOT programming
• HDL are used for describing HARDWARE
• Timing in FPGA gateware (firmware) design is critical

• FPGA - Wikipedia

• A running system is not the end of the road… (Documentation, Maintenance. User Support)
• Try to be methodic when debugging & use all tools available
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Summary

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing – hence "field-programmable".

• FPGA gateware (firmware) design flow
• Plan, plan and plan again

• Coding for synthesis

• Read the reports (Synthesis, Implementation & Static Timing Analysis)
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• Try to be methodic when debugging & use all tools available

But it works 
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Summary

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing – hence "field-programmable".

• FPGA gateware (firmware) design flow
• Plan, plan and plan again

• Coding for synthesis

• Read the reports (Synthesis, Implementation & Static Timing Analysis)
• Optimize in your code but also with constraints and FPGA design tool options

• Modular and reusable system

• Take care of your resets and clocks schemes
• Clock Domain Crossing is tricky  
• You must properly constraint your design

• Key concepts about FPGA design
• FPGA gateware (firmware) design is NOT programming
• HDL are used for describing HARDWARE
• Timing in FPGA gateware (firmware) design is critical

• FPGA - Wikipedia

• A running system is not the end of the road… (Documentation, Maintenance. User Support)

There are nice papers & books but…
FPGA vendors provide very good 
documentation about all topics 

mentioned in this lecture

Where do I find more info about this??

• Try to be methodic when debugging & use all tools available

But it works 
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