Advanced FPGA design

ISOTDAQ 2016 [@ Rehavot (Israel)
29/01/2016

Q

Manoel Barros Marin BE-BI-QP

Advanced FPGA design

ISOTDAQ 2016 @ Rehovot (Israel)
29/01/2016

Outline:

o .. fromthe previous lesson

» Key concepts about FPGA design

* FPGA gateware (firmware) design work flow
e SUMMary

Manoel Barros Marin

Q

BE-BI-QP

Advanced FPGA design

ISOTDAQ 2016 @ Rehovot (Israel)
29/01/2016

Outline:

o .. from the previous lesson
JHeviconeentsiahouuHnl
JEEGMuatewanelliimmwarenuesigiworkiilow
JISUmmnany

Q

Manoel Barros Marin BE-BI-QP

.. from the previous lesson

What is an FPGA : Field Programmable Gate Array?

.. from the previous lesson

What is an FPGA : Field Programmable Gate Array?

FPGA - Wikipedia
https://en.wikipedia.org/wiki/Field-programmable_gate_array

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

.. from the previous lesson

What is an FPGA : Field Programmable Gate Array?

FPGA - Wikipedia
https://en.wikipedia.org/wiki/Field-programmable_gate_array

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

...for Geeks

.. from the previous lesson

« FPGA fabric (matrix like structure) made of: EE mE EE S b
e |/0-cells to communicate with outside world m| LA i
* Logic cells : S -
O look-Up-Table (LUT) to implement combinatorial logic "<&~ 7
O FHip-Flops (D) to implement sequential logic L -
o |nterconnect network between logic resources f— | o

o [lock tree to distribute the clock signals = S BE B B

LuT

LuT

X z —— - L
C . LUT ﬂ R LUT E . E

FRa, G-cen \ >< /’ G-l FRa,
pin

pin

LuT LuT

.. from the previous lesson

e But it also features Hard Blocks:

Example of FPGA architecture
6. 144-Ghps —— HPFS /O

Transceivers
ALMs and
. ARM Cortex-A2
Distributed Memory MPCore HPS
PLLs — M10K Embedded
Memaory Blocks
5.144-Gbps
Transceivers PCS Variable-Precision
Digital Signal Processing
(DSP) Hard IP Blocks
Hard P Blocks for
PCle Gen 2 and —— Up to 560 User /0 Pins
FCle Gen 1
Two CorefTransceiver

External Memaory Power Regulators
Interface Controllers Required (1.1V, 2.5V)

Advanced FPGA design

ISOTDAQ 2016 @ Rehovot (Israel)
29/01/2016

Dutline:

Jsirainhelnieviousyiesson

 Key concepts about HDL
JERGAlyatevanelliimwarelidesignwolkkiilow
o SIMIALY

Q

Manoel Barros Marin BE-BI-QP

Key concepts about FPGA design

FPGA gateware (firmware) design is NOT programming

10

Key concepts about FPGA design

FPGA gateware (firmware) design is NOT programming

N (80 > M) 6‘_,\0%
. <
Sequential &6 & &E@ &6 Q*o" & Parallel
Processing \?}9 ¥ & \.&\(9 ~<'~‘°6Q°\ Q Processing
Q0 N
‘o&% G"\Q&Qe ~ 0{8’{%\0
00

Programming
 [ode is written and translated into instructions
o [nstructions are executed sequentially by the CPU(s)
o Parallelism is achieved by running instructions on multiple threads/cores
 Processing structures and instructions sets are fixed by the architecture of the system

VS.

FPGA gateware (firmware) design
 No fixed architecture, the system is built according to the task
o Building is done by describing/defining system elements and their relations
* Intrinsically parallel, sequential behaviour is achieved by registers and Finite-State-Machines (FSMs)

e Description done by schematics or a hardware description language (HDL)
11

Key concepts about HDL
HDL are used for describing HARDWARE

12

Key concepts about HDL
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

13

Key concepts about HDL
HDL are used for describing HARDWARE

Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)

sleep(5); // sleep 5 seconds

In HDL (e.g. VHDL):

simple delay counter
begin process
if delay rst = '1" then
s_count

o Not synthesizable (only for simulation test benches) -

walt for 5 sec; =
O Jdynthesizable (for simulation and/or FPGA implementation)
5_delay done == '8°';

handy for TB clocks

SYSfemb
process (delay rst, delay clk, delay ena)
<= delay ld value;
elsif rising edge(delay_clk) then
if delay ema = "1' then
if delay ld = '"1" then
else

s count == delay 1d value;

s_count <= s5_count - 1;
end if;

end if;

if 5 _count = @ then

s delay done == '1';
else

s delay done == '0°';
end if;
end if;

end process;

14

Key concepts about HDL
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

e In HOL (e.g. VHOL): - L Sstem™w

O Not synthesizable (only for simulation test benches) oz

walt for 5 sec; -- handy for TBE clocks

O Jdynthesizable (for simulation and/or FPGA implementatiuﬁ)

simple delay counter : process (delay rst, delay clk, delay ena)
begin -- process
if delay rst = '1" then
5 _count <= delay ld value;
5_delay done == '8°';
elsif rising edge(delay_clk) then
if delay ema = "1' then
if delay ld = '"1" then
s count == delay 1d value;
else
s_count <= s5_count - 1;
end if;
end if;
if 5 _count = @ then

s_delay done <= '1'; Register Transfer Level (RTL)

else

s_delay_done <= '0°; http://en.wikipedia.org/wiki/Register-transfer_level

end if;
end if;

end provess: A design abstraction which models a synchronous digital circuit in terms of

' HDL to RTL the flow of digital signals (data) between registers and logical operations

performed on those signals 15

Key concepts about HDL
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

 InHOL (e.g. VRDL):

o Not synthesizable (only for simulation test benches)

walt for 5 sec; -- handy for TBE clocks

O Jdynthesizable (for simulation and/or FPGA implementatiuﬁ)

simple delay counter : process (delay rst, delay clk, delay ena)

begin -- process
if delay rst = '1" then
5 _count <= delay ld value; T
s _delay done <= "0'; | K Project Summary X 50RTL Schematic x @ Delayvhd X Elaborated (RTL} Design
elsif "iszwg edgeldelay_clk) then |30 1sCels 13VOPorts 6oNet
if delay ena = '1' then & T e]
if delay _1d = '1' then +* ! ur:; of7:01
s count == delay 1d value; Q¢ i
else Q; delay_ld [
s_count <= s5_count - 1; %
end i'l:;]
end if; ‘
if s count = @ then delay_rst [5 delay_done_reg
s delay done == '1'; b *
el Sg B ' E B | 5_count_reg(7:0] RTL_EQ Biis y |20 fom
s delay done == '8"; = et = = B ’:TL_REG_AEYNC
end if; & delay_ena [">
end if; '4 delay Jd_value(7:0) 5 s_countl | bi s.countl_|
end process; e | QRO 0 S : RTL_REG_ASYNC
LU ¢ S s ™ B
| counter control counter Flip-Flops registered output 16

Key concepts about HDL
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

 InHOL (e.g. VRDL):

o Not synthesizable (only for simulation test benches)
walt for 5 sec; -- handy for TBE clocks

O Jdynthesizable (for simulation and/or FPGA implementation)

simple_delay counter : process (delay rst, delay_clk, delay_ena) -] Msgs
begin -- process Jsimple_delay/delay rst
if delay rst = '1" then Jsimple_delay/delay_clk
s _count <= delay 1d value; ’Siml’:-:e:w:e:\‘-e”“a
- _ e . | I Project Summary X RTL Schematic x & O /simple_delay/delay |
S_IdE.LE.I}‘__dCII'IE <= '8'; 3n| 15Cells 1310 Ports 64 Net ,rS|mple delay/delay_|d_value
elsif rising edge(delay_clk) then & = =
if delay ena = "1’ then * T inusOp.i 0 0
if delay_1ld = '1' then =T :
s count == delay 1d value; Q¢
E'-I.SE' ;_< delay 14> Cme Now - ||.|H|||||||H||||||||HH|||||||||
s count <= 5 count - 1; &se Cursor 1 |5 sec
E'hd_if H - I Cursor 3 [5 sec |
end if; :
if s count = @ then delay_rst [s_delay_done_reg
s aelay done == '1"; e
— — ' e delay_clk [— — | L 9 > delay_done
else = s count_regl7:0) i RTL_EQ ”
s delay done == '0°'; = = HTL_REG_ASYNC
end lf, & delay_ena ["> .
) s, | delay_ld_value|7:0] [D— r i
end if; | G s_countl | = =
end process; e | QRO 0 i : RTL_REG_ASYNC
% RTL_INV e
(to RTL .
:'32'
counter control counter Flip-Flops registered output 17

Key concepts about HDL
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |nprogramming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

 InHOL (e.g. VRDL):

o Not synthesizable (only for simulation test benches)
walt for 5 sec; -- handy for TBE clocks

System‘bm_ Q

O Jdynthesizable (for simulation and/or FPGA implementatiuﬁ)

simple_delay counter : process (delay rst, delay_clk, delay_ena) -] Msgs
begin -- process £ [simple delay/delay rst
if delay rst = '1' then 4 [simple_delay/delay_clk
s_count <= delay 1ld value; o [Tz G Ay R G

L Project Summary X] RTL Schematic x & [£ [simple_delay/delay_Id
30| 15Cells 131/QPorts 54 Net &< [simple_delay/de’
2 4 /simple_delay/de

5_delay done == '8°';
elsif rising edge(delay_clk) then

if delay_ena = '1° then i T minusOp_i 8- /simple_delay/s ¢
if delay ld = '"1" then ! ‘”‘I’AI(ol “ [simple_delay/s_
s count == delay 1d value; Q¢ i
else L= delay 1d[>
s_count <= s5_count - 1; %
end if; &
end if;
if sacguntd= ¢] therl'. N delay_rst 1
s_delay done <= "17; o delay_cik [~
else s
s delay done == '0°'; -
end lf,. Ty delay_ena [
B g | delay_ld_value7:0]
end if; & o s_cuuntlﬁi
end process; g a70in_ 0i%0)

» RTL_INV

‘ HOL to RTL x =P
counter control

Key concepts about HDL

Timing in FPGA gateware (firmware) design is critical

19

Key concepts about HDL

Timing in FPGA gateware (firmware) design is critical

o Data propagates in the form of electrical signals through the FPGA

FPGA DEVICE

Board
Device

Board
Device

Synthesized RTL (Netlist) is implemented into FPGA

20

Key concepts about HDL

Timing in FPGA gateware (firmware) design is critical

o Data propagates in the form of electrical signals through the FPGA

FPGA DEVICE

Board
Device

Board
Device

Synthesized RTL (Netlist) is implemented into FPGA

o [f these signals do not arrive to their destination on time...

The consequences may be catastrophic!!! 21

Key concepts about HDL

When designing FPGA gateware (firmware) you
have to think HARD..

22

Key concepts about HDL

When designing FPGA gateware (firmware) you
have to think HARDWARE

23

Advanced FPGA design

ISOTDAQ 2016 @ Rehovot (Israel)
29/01/2016

Dutline:

Jsirainhelnieviousyiesson
Jieyicaneenisiahouiinl

 FPGA gateware (firmware) design work flow
ISUImary

Q

Manoel Barros Marin BE-BI-QP

FPGA gateware (firmware) design work flow

Constraints
(Physical
o Timing)

<

Project
Specification

v

Design Entry

}

Synthesis

|

Implementation

|

Static Timing Analysis

}

Bitstream Generation
& FPGA Programming

l

Y

l

Behavioural Simulation

Functional Simulations
(Post-Synthesis
or
Post-Implementation)

Timing Simulation

In-System
Debugging

FPGA gateware (firmware) design work flow
Project Specification

The rest of the design process is based on it!!!

26

FPGA gateware (firmware) design work flow
Project Specification

 [Gather requirements from the users Tl’lE rest Elf thE dESigI’I Process IS |JEISEE| On It”'

27

FPGA gateware (firmware) design work flow
Project Specification

 [Gather requirements from the users Tl’lE rest Elf thE dESigI’I Process IS |JEISEE| On It”'
o Specify:

* Target application (Specific or General purpose)
Example of General Purpose Gateware

oo
- P

< / System Firmware
o
I SYSTEM CORE I USER LOGIC I

28

FPGA gateware (firmware) design work flow
Project Specification

 bBather requirements from the users ThE rest I]f thE dESigI’I Process IS |JE|SEE| an Itm
o Specify:

* Target application (Specific or General purpose)

Example of Application Specific bateware

LEGEND

CLK &0MHz

CLK 1G0MHz

it reeeanin

lipstream
BBT Serializer poos-e-- :
Optical ¢ TIC ;
|- - trawscaiver | Gupps | SOUTCE |
Readont GET Deserializer @ femmmann,
I‘ i SFP+ L '
7 & Tramscever | < U ¥ GBTx '
| PLL<—! Recovered 48Ebps 7777

X CLK

FPGA gateware (firmware) design work flow
Project Specification

 [Gather requirements from the users ThE rest I]f thE dESigI’I Process IS |JE|SEE| On It”'
o Specify:

 Target application (Specific or General purpose)

 Main features (e.g. System bus, Multi-gigabit transceivers, etc.)

Example of FPGA Architecture

6.144-Gbps —— HPS IO
Transceivers
ALMs and
o ARM Cortex-49
Distributed Memary MPCare HPS
Plls — M10K Embedded
Memory Blocks
6.144-Ghps
Transceivers PCS Variable-Precision
Digital Signal Processing
(DSP) Hard IP Blocks
Hard |F Blocks for
PCle Gan 2 and —— Up to 560 User 110 Pins
PCle Gen 1
Two Core/Transceiver

External Memory Power Regulators
Interface Controllers Required (1.1%, 2.5V) 30

FPGA gateware (firmware) design work flow
Project Specification

+ Gather requirements from theusers | N2 rest of the design process is based on it!l!
o Specify:
* Target application (Specific or General purpose)

 Main features (e.g. System bus, Multi-gigabit transceivers, etc.) iliny
 FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.) 2369.45

49%
v =
A nYA
& XILINX AOERYE
ALL PROGRAMMABLE. now part of Intel
I QuickLogic
20.2
1%
Am : Microsemi
e © [licrosemi. " ﬁgfg o
BHLATTICE & Quickiogic 59077
- 6%
Small FPGA vendors may target specific markets ?Igtgfali% FPGA Market Share by 2010

(e.g. Microsemi offers high reliable FPGAs, etc.) 40% in Millions of USD 31

FPGA gateware (firmware) design work flow
Project Specification

This [s the most critical step.-
 [Gather requirements from the users ThE rest I]f thE dESigI’I Process IS |JE|SEE| On It”'
* Specity: Example of COST board (Yilinx Devkit)

 Target application (Specific or General purpose)

 Main features (e.g. System bus, Multi-gigabit transceivers, etc.)
FPGA vendor (e.q. Xilinx, Altera, Microsemi, Lattice, etc.)
Electronic board (Custom or COST (%))

Example of Custom Board

e ™
==
==
=
:é_'-? -

PR

(*) Commercial off-the-shelf (COTS) .

FPGA gateware (firmware) design work flow
Project Specification

 [Gather requirements from the users Tl’lE rest Elf thE dESigI’I Process IS hESEd On It”'
o Specify:
o Target application (Specific or General purpose) Ef(f_mplEquJ_FEmTEPE'El ool
Main features (e.g. System bus, Multi-gigabit transceivers, etc.) |+ ST

FPGA vendor (e.q. Xilinx, Altera, Microsemi, Lattice, etc.)
Electronic board (Custom or COST (%))

Development tools (FPGA vendor or Commercial)

33

FPGA gateware (firmware) design work flow
Project Specification

 [Gather requirements from the users Tl’lE rest Elf thE dESigI’I Process IS hESEd On It”'
o Specify:

 Target application (Specific or General purpose)

 Main features (e.g. System bus, Multi-gigabit transceivers, etc.)

 FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

o Electronic board (Custom or COST (%))

 Development tools (FPGA vendor or Commercial)

o [ptimization (Speed, Area, Power or default)

34

FPGA gateware (firmware) design work flow
Project Specification

 [Gather requirements from the users Tl’lE rest Df thE dESigI’I Process IS |JEISEE| On It”'
o Specify:

 Target application (Specific or General purpose)

 Main features (e.g. System bus, Multi-gigabit transceivers, etc.)

 FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

o Electronic board (Custom or COST (%))

 Development tools (FPGA vendor or Commercial)

o [ptimization (Speed, Area, Power or default)

35

FPGA gateware (firmware) design work flow
Project Specification

 [Gather requirements from the users Tl’lE rest Elf thE dESigI’I Process IS |JEISEE| On It”'
o Specify:

 Target application (Specific or General purpose)

 Main features (e.g. System bus, Multi-gigabit transceivers, etc.)

 FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

o Electronic board (Custom or COST (%))

 Development tools (FPGA vendor or Commercial)

o [ptimization (Speed, Area, Power or default)

36

FPGA gateware (firmware) design work flow
Project Specification

This [is the most critical step..
Gather requirements from the users Tl’lE rest Elf thE dESigI’I Process IS |JEISEE| On It”'
Specify: P

Target application (Specific or General purpose)

Main features (e.g. System bus, Multi-gigabit transceivers, etc.)
FPGA vendor (e.q. Xilinx, Altera, Microsemi, Lattice, etc.)
Electronic board (Custom or COST (%))

Development tools (FPGA vendor or Commercial)

Optimization (Speed, Area, Power or default)

37

FPGA gateware (firmware) design work flow
Project Specification

 [Gather requirements from the users ThE rest Df thE dESigI’I Process IS |JEISEE| On It”'
o Specify:

Examples of Design Languages
o Target application (Specific or General purpose) =

 Main features (e.g. System bus, Multi-gigabit transceivers, etc.) R m
 FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.) q
o Electronic board (Custom or COST (%))
 Development tools (FPGA vendor or Commercial)

o [ptimization (Speed, Area, Power or default)

o Design language (Schematics or HDL (e.g. VHDL, etc.))

HDL are the most popular for RTL design
but...

Schematics may be better in some cases ==

(e.g. Embedded Processor configuration,
etc..)

FPGA gateware (firmware) design work flow
Project Specification

 [Gather requirements from the users Tl’lE rest Elf thE dESigI’I Process IS hESEd On It”'
o Specify:

 Target application (Specific or General purpose)

 Main features (e.g. System bus, Multi-gigabit transceivers, etc.)

 FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.)

o Electronic board (Custom or COST (%))

 Development tools (FPGA vendor or Commercial)

o [ptimization (Speed, Area, Power or default)

o Design language (Schematics or HDL (e.g. VHDL, etc.))

e [Coding convention

Example of Coding Convention

description extension example
YO U r CO d e variable prefix v v_Buffer
S h O u I d be alias prefix a a_Bit5
constant prefix ¢ c_Lenght
re ad ab I e type definition prefix t t_MyType
generics prefix g g Width 39

FPGA gateware (firmware) design work flow
Project Specification

o Specify:

 Target application (Specific or General purpose)
o Main features (e.g. System bus, Multi-gigabit transceivers, etc.) |5==
o FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.) | =

Gather requirements from the users

e Electronic board (Custom or COST (%))

 Development tools (FPGA vendor or Commercial)

o [ptimization (Speed, Area, Power or default)

* Design language (Schematics or HDL (e.g. VHDL, etc.))

e [Coding convention

The rest of the design process is based on it!!!
Example of [1'|J|s

(B

 Software interface (GUI, Scripts or both) Example of TCL script
R4 444444444444 3004404714340 44000 0 R ih
FREFEFEFEFESAH444#4+ Commands for Adding the Source Files of the GBET-FFGA Core ####ffffffidififssssss Xlllnx |SE TEI‘ EDHSDIE

T IT TR AT I T R AT T TR T T AT A TR T I T AT A PR A AT AR A AR T AT AR AT 4S

49 #%# Comment: Adding Common files:

51 puts "->"

puts "-> Adding common files of the GBT-FPGA Core to the ISE pr

puts "->"

xfile add $SOURCE_PAL
xfile add S£50URCE PATH/gbt bank/core sources/gbt rx/gbt rx deco
xfile add $S0OURCE PR

TH/gbt_bank/core sources/gbt_rx/gbt rx.vhd

TH/gbt bank/core sources/gbt rx/gbt rx deco

Td Console

Command= | xtdsh gbt_fpga.td wling virtex7

||§ Console |a Errors |i"1 Warnings | @ Td Console | [Find in Files Results
S

40

FPGA gateware (firmware) design work flow

Project Specification

 [Gather requirements from the users ThE rest I]f thE dESigI’I Process IS |JE|SEE| On It”'

o Specify:

 Target application (Specific or General purpose)
 Main features (e.g. System bus, Multi-gigabit transceivers, etc.)
 FPGA vendor (e.g. Xilinx, Altera, Microsemi, Lattice, etc.) -
o Electronic board (Custom or COST (%)) e ————
 Development tools (FPGA vendor or Commercial)

o [ptimization (Speed, Area, Power or default)

o Design language (Schematics or HDL (e.g. VHDL, etc.))
e [Coding convention

 Software interface (GUI, Scripts or both)

e lse of files repository (SVN, GIT, etc.. or none)

‘l
| |‘

41

FPGA gateware (firmware) design work flow
Project Specification

+ Block diagram of the system The rest of the design process is based on it!!!
e |nclude the FPGA logic...

e ... but also the on-board devices and related devices

 May combine different abstraction levels
Example of system block diagram

MICA Crate

FPGA

GBT Deserializaer

Readout SFFf
Logic Transceiver 4 8Btys
Recovered
AL
CLK 40WHz jj 0K

42

FPGA gateware (firmware) design work flow
Project Specification

+ Pin planning The rest of the design process is based on it!!!

Pin Planner - /home/adpl/CPREZ281/project/Project - Project

Pin assignments are one type

File Edit View Processing Tools Window Help & i-:';;.:-ar.:h altera.com)
of Location Constraints o Grous 255 T
Named:[* 5 I Cychons 11 - EF‘ZCE‘SF'DT?Cb
;E MNode Name Direction Location .
I ot g (=37 1) group::-::- [i | 1
|
@D\ S AR
o &
Critical for X
] o v
Custom Boards!!l |-

-

| [+

B INamed.* w | ¥y [Edit:] 3 | « | “:FlltEr.[PIHS. all
@

|le ik

g Node Name Direction Location /O Bank VREF Group /O Standard Reserve
ﬁﬁ e BitD Input PIN_N25 5 B5_ N1 3.3-V ...fault) E
e Bitl Input PIN_N26 5 B5_N1 3.3-V ...fault)
=S 1> Bit2 Input PIN_P25 6 B6_NO 3.3-V ..fault)
_____ B> Bit3 Input PIN_AE14 7 B7_N1 3.3-\V ..fault)
Hit B Clear Input PIN_\V2 1 B1_NO 3.3-\V ...fault)
i = Clock Input PIN_N2 2 B2 N1 3.3-\V ...fault)
- " B+ Control Input PIN_C13 3 B3_NO 3.3-\V ...fault)
% E s Gn Input PIN_B13 4 B4 N1 3.3-\V ...fault) L
= innuta Qutnut PIN 13 2 B2 N1 3 3-W ...fault) Bt
g | =t .‘[!‘ET [[*]

Example of Pin Planner GUI 0% oo00:00 | 43

FPGA gateware (firmware) design work flow
Design Entry

1 1
PHASE 3

44

FPGA gateware (firmware) design work flow
Design Entry: Modularity & Reusability

Your system should be Modular

e Design at RTL level (think hard...ware)

 Well defined clocks and resets schemes

o Separated Data & Control paths Clock
e Multiple instantiations

Good example of Modular System

P 8-hit Counter

v

Pattern
Generator
Reset

A
Data Valid Flag I

[ncrement Reset

g-bit

L

Your code should be Reusable Reset

e Add primitives (and modules) to the system by inference when possible

i

Data

16-bit

’

Address

RAM
2abx16-bit

Write Enable

Data Reset

}

o llse parameters in your code (e.g. generics in VHDL, parameters in Verilog, etc.)

 C[entralise parameters in external files (e.g. packages in VHDL, headers in Verilog, etc.)
o Use configurable modules interfaces when possible (e.q. parametrised vectors, records in VHDL, etc.)

o lse standard features (e.g. I2C, Wishbaone, etc.)

o lse standard IP Cores (e.g. from www.0penCores.org, etc.)

e Avoid vendor specific IP Cores when possible

o Talk with your colleagues and see what other FPGA designers are doing

FPGA gateware (firmware) design work flow
Design Entry: Coding for Synthesis

Synthesizable code Is intended for
FPGA Implementation

 Use non-synthesizable HLD statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures
and directives that could potentially create a mismatch between simulation and synthesis.

From book "Advanced FPGA Design” by Steve Kilts (Copyright € 2007 John Wiley & Sons, Inc.)

46

FPGA gateware (firmware) design work flow
Design Entry: Coding for Synthesis

Synthesizable code Is intended for
FPGA Implementation

 Use non-synthesizable HLD statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures
and directives that could potentially create a mismatch between simulation and synthesis.

From book "Advanced FPGA Design” by Steve Kilts (Copyright € 2007 John Wiley & Sons, Inc.)

 The RTL synthesis tool is expecting a synchronous design...

47

FPGA gateware (firmware) design work flow
Design Entry: Coding for Synthesis

Synthesizable code Is intended for
FPGA implementation

 Use non-synthesizable HLD statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures
and directives that could potentially create a mismatch between simulation and synthesis.

From book "Advanced FPGA Design” by Steve Kilts (Copyright € 2007 John Wiley & Sons, Inc.)

 The RTL synthesis tool is expecting a synchronous design...

But what is a synchronous design???

48

FPGA gateware (firmware) design work flow
Design Entry: Coding for Synthesis

Synthesizable code Is intended for
FPGA Implementation

* Use non-synthesizable HLD statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures
and directives that could potentially create a mismatch between simulation and synthesis.

From book "Advanced FPGA Design” by Steve Kilts (Copyright € 2007 John Wiley & Sons, Inc.)

 The RTL synthesis tool is expecting a synchronous design...

Synchronous design is the one compose by combinatorial logic (e.g. logic gates, multiplexors, etc..) and
sequential logic (registers that are triggered on the edge of a single clock),

Combinatorial Logic Sequential Logic Synchronous design
pRa D " QpF—0Out In

v
Q n Combinatorial Logic —out
BakK: .g
Clm— Clk Clk Cli Clk

FPGA design tools only analyse synchronous designs!!! as

Rst Rst
5 1 ¥
R

}
.

FPGA gateware (firmware) design work flow
Design Entry: Coding for Synthesis

 [Combinatorial logic coding rules

o Sensitivity list must include ALL input signals
Not respecting this may lead to non responsive outputs under changes of input signals

e ALL output signals must be assigned under ALL possible input conditions
Not respecting this may lead to undesired latches (asynchronous storage element)

 Nofeedback from output to input signals
Not respecting this may lead to unknown output states (metastability) & undesired latches

Good combinatorial coding for synthesis Bad combinatorial coding for synthesis
1ypical Asynchronous Latch
Truth Table y
D T
B 00O0)|0 —s - -
Q po1|o —— 0 1
C 010|0 - —
0110 —R . - 1]
1001 S Metastable
1T01|0 -
110]|0
1110
process (Input A, Input B,Input C) process (Ipfnut R)
begin begin
Cutput nand <= Input A nand Input B; tput Q <= Input R nor CutdNt Q n:
Output _nor <= Input A nor Input B; Cutput @ n <= Input 5 nor CutputNQ:
- nd process;
Cutput_ Q <= Cutput nand and Input C and Output nor;

end proocess;

50

FPGA gateware (firmware) design work flow
Design Entry: Coding for Synthesis

 Sequential logic coding rules

e [nly clock signal (and asynchronous set/reset signals when used) in sensitivity list
Not respecting this may produce undesired combinatorial logic

e Al registers of the sequence must be triggered by the same clock edge (either Rising or Falling)
Not respecting this may lead to metastability at the output of the registers

e Include all registers of the sequence in the same reset branch
Not respecting this may |ead to undesired register values after reset

Good sequential coding for synthesis Bad sequential coding for synthesis

proce=s (Clk, E=t)

begin Rst ‘+ EE Tess:tlk,Rst,Input_In}

if (Rst = '"') then X X g
Output_Out <= '0'; In D Q D Q QOut ut ouge= 100
Output Q = "0 .

- cl Clk) th

elsif rising edge(Clk) then .—: E‘E:Dut}ut Zn
D'.J.t.E'.J.t._D'J.t. <= D'.J.t.p'.lt-_Q.-' Clk Clk Clk 8 Put_ks
Cutput Q <= Input In; '

end if:
end process;

51

FPGA gateware (firmware) design work flow
Design Entry: Coding for Synthesis

 Synchronous design coding rules:

FULLY synchronous design
o No combinatorial feedback

o Noasynchronous latches
Not respecting this may lead to incorrect analysis from the FPGA design tool

Register ALL output signal
Not respecting this may lead to uncontrolled length of combinatorial paths

Properly design of reset scheme (mentioned later)

Not respecting this may lead to undesired register values after reset

Properly design of clocking scheme (mentioned later)

Not respecting this may lead to metastability at the output of the registers & Misuse of resources
Properly handle Clock Domain Crossings (CDC) (mentioned later)

Not respecting this may lead to metastability at the output of the registers

v

QF—oOut

N

Combinatorial Logic

52

FPGA gateware (firmware) design work flow

Design Entry: Coding for Synthesis
 Finite State Machines (FSMs):

o Digital logic circuit with a finite number of internal states
e Widely used for system contral

e Two variants of FSM

O Moore: Dutputs depends only on the current state of the FSM
o Mealy: Outputs depends only on the current state of the FSM as well as the current values of the inputs

» Modelled by State Transition Diagrams Button Not
Button Pressed pressed

Button Mot
Pressed

Button Pressed

 Many different FSM coding styles (But not all of the are good!!)
 FSM coding considerations:

O Jdynchronize inputs & outputs
o [Outputs may be assigned during states or state transitions
o Be careful with unreachable/illegal states

o You can add counters to FSMs -

FPGA gateware (firmware) design work flow
Design Entry: Reset Scheme A bad reset scheme may get you crazy!l!

e Used to initialize the output of the registers to a know state
e [t has a direct impact on:

 Performance

* Logic utilization

o Reliability
o Different opinions due to...
« Different approaches:

0 Asynchronous
Pros: No free running clock required, easier timing closure

Cons: skew, glitches, simulation mismatch, difficult to debug, extra constraints, etc.
o Synchronous

Pros: No Skew, No Glitches, No simulation mismatch, Easier to debug, No extra constraints, etc..
Cons: Free-running clock required, More difficult timing closure

O NoReset Scheme
Pros; Easier Routing, Less resources, Easiest timing closure
Cons: Only reset at power up (in some devices not even that..) <- In fact, reset is not always needed

o Hybrid: Usually in big designs (Avoid when possible!!l)

54

FPGA gateware (firmware) design work flow

Design Entry: Reset Scheme A bad reset scheme may get you crazy!!

Used to initialize the output of the registers to a know state
It has a direct impact on:

e Performance My adV|Se |S

e |oqic utilizatio
e You should use
o Reliability

Different opinions due to... SYN C H RO N O U S RES ET
Different approaches: by d efau It

O Asynchronous
Pros: No free running clock required, easier timing closure

Cons: skew, glitches, simulation mismatch, difficult to debug, extra constraints, etc.
o Synchronous

Pros: No Skew, No Glitches, No simulation mismatch, Easier to debug, No extra constraints, etc..
Cons: Free-running clock required, More difficult timing closure
O NoReset Scheme
Pros; Easier Routing, Less resources, Easiest timing closure
Cons: Only reset at power up (in some devices not even that..) <- In fact, reset is not always needed

o Hybrid: Usually in big designs (Avoid when possible!!l)

55

FPGA gateware (firmware) design work flow

Design Entry: Clocks Scheme

Clocking resources are very preclousti
 [Clock regions “

« Clack trees (Blobal § Local) Local clock tree —|i

o [ther FPGA clocking resources
e C[lock capable pins

o [lock buffers
 [lock Multiplexors

e PLLs & DCM
Clock Regions <

 Bad practices when designing your clocking scheme

Gated clocks Derived clocks
FF

T2 Never use these clocks
in your system!!!

CLK

FF

56

FPGA gateware (firmware) design work flow
Design Entry: Timing

« Sampling In B, .8 Out

Sampling clk clk
Point

Cluck | | | |
~ X | o X o X

No Stable Data
(Metastable Area)

57

FPGA gateware (firmware) design work flow
Design Entry: Timing

 [Clock Domain Crossing (CDC)

See you on the other side...

58

FPGA gateware (firmware) design work flow
Design Entry: Timing

 [Clock Domain Crossing (CDC)

See you on the other side...

P S e gl el T 8

. e > K . N 4
= -l -2 e e N

) ST e R T G

- °ormaybe not.%

-
P o

A 4 <
- -‘__.‘ . -

— —

FPGA gateware (firmware) design work flow
Design Entry: Timing

 [Clock Domain Crossing (CDC): The problem...

e [lock Domain Crossing (CDC) : passing a signal from one clock domain to another (A to B)
e |f clocks are unrelated to each other (asynchronous) timing analysis is not possible
o Setup and Hold times of FlipFlop B are likely to be violated -> Metastability!!!

Signal violates the setup-time of FlipFlop B clocked by Clk B
Bout becomes metastable and then settles at either at 1'or ‘0" ¢

Avoid creating unnecessary clock domains e

FPGA gateware (firmware) design work flow
Design Entry: Timing

 [Clock Domain Crossing: The workaround...

FPGA gateware (firmware) design work flow
Design Entry: Timing

 [Clock Domain Crossing: The workaround...
 [ontrol Paths:

Synchronizers Handshaking DPRAM
" VALID el Din Dot el
3 : VLD,
" =R e READY T —>| WrEn RrEn

III
BLOCKA |¢———— BLOCKB
Clk ’Clk clk OC DATA [I][l]» Wr Addr RdAddr h [|]|]]
| > —>| Wrllk RdCk |Je——

FPGA gateware (firmware) design work flow
Design Entry: Timing

Rst

Clock Domain Crossing: The workaround...

Control Paths:

Clk

Synchronizers Handshaking DFRAM
«mmp| Din Dout e
. . VALID,
D Q Q—Out BLOCK A READY BLOCK B 1"—>»| Wrkn RrEn je——1
- » ¢ NATA [0..0) epp| Wr Addr Rd Addr |« [0_0]
— —>{ Wbk RdCk fe——o
Data Paths:
Handshaking P! Din Dout e
VALID
—> —>| WrEn Asynchronous RrEn fe——
BLOCKA |27 1 glock B BN P FIFD Empty }——
DATA
—> —>| WrClk Rd Clk je——

Be aware of FIFO overflow/underflow!!!

FPGA gateware (firmware) design work flow
Design Entry: Timing

Clock Domain Crossing: The workaround...

Control Paths:

Synchronizers Handshaking DFRAM
VALID «mmp| Din Dout »
—> o
BLOCKA [~=22Y 1 Block B | frfn - Hrkn !
— [0..0] | Wr Adde R Addr |« [0..0]
— —| Wrk RdCk |e——o
Data Paths:
Handshaking P! Din Dout e
VALID
LN —>| WrEn Asynchronous RrEn le—
BLOCKA |~EA2Y | glock BN P FIFD Empty |«——
DATA
—> —»| WrClk Rd Clk je——

I LvL__r v __ 5 ™ ___
—_—r
. | I | I

Control & Data Paths:

Phase alignment

Be aware of FIFO overflow/underflow!!!

Pros: Low & deterministic latency
Cons: Same clock source, frequency an integer

multiple & calibration required o4

FPGA gateware (firmware) design work flow
Design Entry: Primitives & IP Cores

* Primitives: Basic components of the FPGA
e \Vendor (and device) specific

o Examples: Buffers (/0 & Clock), Registers, BRAMs, DSP blocks, Logic Gates (programed LUTs)
 Hard IP Cores: Complex hardware blocks embedded into the FPGA

e Vendor (and device) specific

o Fixed /0 location

* [n many cases they may be set through GUI (Wizards)

o Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessors, etc..

o Soft IP Cores: Complex (or simple) modules ready to be implemented Instantiated FipFlop
" . (for Microsemi ProAsics)
e They may be vendor specific or agnostic: _
DFNIC1l FlipFlop
o Vendor Specific: Encrypted Code or Requires Hard IP Core o mmpu),
o Vendor Agnostic: Commercial or Open Source (www.OpenCores.org) _CIR (Rst),

.0 (Cutput _Q)) ;

 |nmany cases they may be set through GUI (Wizards)

o Examples: : All kind of modules Inferred FlipFlop (Verilog)

o Two ways of adding Primitives & IP Cores to your system: ii;ii t:;pzjedge T or posedse FR
o |nstantiation: The module is EXPLICITELLY added to the system output_g <= 0

else

o |nference: The module is IMPLICITELLY added to the system o TERELR <7 ImpuE D,

FPGA gateware (firmware) design work flow

Design Entry: Primitives & IP Cores

* Primitives: Basic components of the FPGA

Add Primitiygs by Inferenpg

Vendor (and device) specific

Examples: Buffers (I/0 & Clock), Registers, BRAMs, DSP block

s, Logic bates (programed LUTs)

 Hard IP Cores: Complex hardware blocks embedded into the FPGA

Vendor (and device) specific
Fixed /0 location
In many cases they may be set through GUI (Wizards)

Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessars, etc..

o Soft IP Cores: Complex (or simple) modules ready to be implemented Instantiated FipFlop
" . (for Microsemi ProAsics)
They may be vendor specific or agnostic: _
DFNIC1l FlipFlop
o Vendor Specific: Encrypted Code or Requires Hard IP Core o mmpu),
o Vendor Agnostic: Commercial or Open Source (www.OpenCores.org) _CIR (Rst),

In many cases they may be set through GUI (Wizards)
Examples: : All kind of modules

 Two ways of adding Primitives & IP Cores to your system:

Instantiation: The module is EXPLICITELLY added to the system
Inference: The module is IMPLICITELLY added to the system

.0 (Cutput _Q)) ;

Inferred FlipFlop (Verilog)

always @ (posedge Clk or posedge Rst)
begin
if (Rst)
ocutput_Q <= 0;
else
output_Q <= Input_D; 66
end

FPGA gateware (firmware) design work flow
Design Entry: Primitives & IP Cores

* Primitives: Basic components of the FPGA

Vendor (and device) specific

Add Primitiygs by Inferenpg

Examples: Buffers (I/0 & Clock), Registers, BRAMs, DSP blocks, Logic Gates (programed LUTs)
 Hard IP Cores: Complex hardware blocks embedded into the FPGA

Vendor (and device) specific
Fixed /0 location
In many cases they may be set through GUI (Wizards)

Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessars, etc..

o Soft IP Cores: Complex (or simple) modules ready to be implemented Instantiated FipFlop
" . (for Microsemi ProAsicd)
They may be vendor specific or agnostic: _
DFNIC1l FlipFlop
o Vendor Specific: Encrypted Code or Requires Hard [P Core o mmpu),
o Vendor Agnostic: Commercial or Open Source (www.OpenCores.org) _CIR (Rst),

In many cases they may be set through GUI (Wizards)
Examples: : All kind of modules

 Two ways of adding Primitives & IP Cores to your system:
Instantiation: The module is EXPLICITELLY added to the system output_g <= 0

Inference: The module is IMPLICITELLY added to the system

.0 (Cutput _Q)) ;

Inferred FlipFlop (Verilog)

always @ (posedge Clk or posedge Rst)
begin
if (Rst)

else
output_Q <= Input D; 67
end

FPGA gateware (firmware) design work flow
Synthesis

e What does it do?

e Translates the schematic or HDL code into elementary logic functions
e Defines the connection of these elementary functions

o lses Boolean Algebra and Karnaugh maps to optimize logic functions

o The FPGA design tool optimizes the design during synthesis
|t may do undesired changes to the system (e.g. remove modules, change signal names, ete.)!l!

« Always check the synthesis report Example of Synthesis Report
» Warnings & Errars [" Tine 700: attribute on tnscance SINIT 10s aversides gineric/pacemeces o

E . d | . [. vhd"™ line Z08: attribute on inatance {IHII::.D} overrides generic/parameter of

° StImEltE FeSOUTCE Utl IZEItIDﬂ [, vhd®™ line 208: attribute on instance <INIT 1E> overrides generic/parameter of

. . . L vhd™ line ZhS i ————— . 3 T T T Iy BETEr of

L4 Dptlmlzatlnns 4. T LU T ‘EPr0|e(:rj:;mr|:i:);;—_iineujie_”;:!nI:e!a)'.vhd ® 7 Schematlc x b @ m

e And more...

 And also check the RTL/Technology viewers

Example of RTL Schematic | = e

FPGA gateware (firmware) design work flow
Constraints: Timing

* For a reliable system, the timing requirements for all paths must be provided to the FPGA design tool.
Provided through constraint files (e.g. Xilinx .XDC, etc..) or GUI (that creates/writes constraint files).
The most common types of path categories include:

* Input paths Example of timing constraint (Xilinx .ucf)
o [utput paths —

Tgy/ Ty

 Register-to-register paths (combinatorial paths) Dt .
atacX _[] Data o Q

o Path specific exceptions (e.g. false path, multi-cycle paths, etc.) -

To efficiently specify these constraints: > GLK

) Begin with global constraints (in many cases with this is enough) ~ Skext__ 7 ek

[]

Z) Add path specific exceptions as needed

o [Over constraining will difficult the routing i"— o eome |
1] s
1 VALID Data i

|

[
|
le—— VALID Duration ——!

TIMEGRP DATA TN OFFSET = IN 1 VALID 3 BEFORE CLK RISING;

FPGA gateware (firmware) design work flow
Constraints: Physical

* Pin planning

Synthesized Design - netlist_2 - synth_2 constrs_2 | xc7k70tfbg484-2 make active

[H] netlist_1-synth_1 | constrs_2 | xc7k70tfbg484-2 x [4] netlist_2 - synth_2 | constrs_2 | xc7k70tfbg484-2 x Close

Netlist - 0O 2 i Package X | Device X
= H\E

3 bft

[+] Nets (1918

= Primitives {336

As previously mentioned...
You should do Pin Planning
during Specification Stage

(@] armd1
&-[@] amd2 (ro
#-{&] arnd3 (ro
+-{&] amd4 (round_4
- [@] egressLoop(0].egressFifo (FifoBuff:
[@-[d] egressloop[1].egressFifo (Fifor
[#-{Z] egressLoop[2].egressFifo (Fifobuffer NO3_egressloop
[#-{&] egressLoop[3].egressFifo (FifoBuffer NOB_egressLoop
+#{B] egressLoop[4] egressFifo (FifoBuffer_NO1
. [T anrasel AnnlS] anraceFifn (Fif ff
m

<5 Sources 5] Netlist

* Floorplanning
o Try to place |ogic close to their related |/0 pins
e Try to avoid routing across the chip
 Place the Hard IP cores, the related logic will follow
 You can separate the logic by areas (e.g. Xilinx Pblocks)

Floorplanning may improve routing times and allow
faster system speeds... but too much will difficult the routing!!!

70

FPGA gateware (firmware) design work flow

Implementation
e The FPGA design tool:

[) Translates the Timing and Physical constraints in order to guide the implementation
18 1

Z) Maps the synthesized netlist:

O Logic elements to FPGA logic cells

o Hard IP Cores to FPGA hard blocks K

o Verifies that the design can fit the target device Lagic

Block
3) Places and Routes (P&R) the mapped netlist:

Legic
Block

o Physical placement of the FPGA logic cells

o Physical placement of the FPGA hard blocks -~ p—

O Routing of the signals through the interconnect network & clock tree

A

Interconnect Block

 The FPGA design tool may be set for different optimizations (Speed, Area, Power or default)

 Physical Placement & Timing change after re-implementing (use constraints to minimize these changes)

 You should always check the different reports generated during implementation

FPGA gateware (firmware) design work flow
Static Timing Analysis

 The FPGA design tool analyses the signals propagation delays and clock relationships after P&GR
A timing report is generated, including the paths that did not meet the timing requirements
* Rule of thumb for timing violations:

\} e Setup violations: Too long combinatorial paths

Hold violations: Issue with CDC and/or Path specific exceptions
e The timing closure flow:

FPGA gateware (firmware) design work flow
Static Timing Analysis

 The FPGA design tool analyses the signals propagation delays and clock relationships after P&GR
A timing report is generated, including the paths that did not meet the timing requirements
* Rule of thumb for timing violations:

g/ e Setup violations: Too long combinatorial paths & Implementation

s Hold violations: Issue with CDC and/or Path specific exceptions
e The timing closure flow:

Design meets timing?

v y v v

Timing constraint Physical constraints
changes (floorplanning) changes

FPGA design tool options
changes

v

| Re-implementation

Design changes

FPGA gateware (firmware) design work flow
Bitstream Generation & FPGA Programming

o Bitstream:
e Binary file containing the FPGA configuration data
o Each FPGA vendor has its own bitstream file extension (e.g. .bit (Xilinx), .sof (Altera))

 FPGA programming:

e Bitstream is loaded into the FPGA through JTAG
o [onfiguration data may be stored in on-board FLASH and loaded by the FPGA at power up

 Multiboot/Safe FPGA configuration

FPGA gateware (firmware) design work flow
Bitstream Generation & FPGA Programming

o Bitstream:
e Binary file containing the FPGA configuration data
o Each FPGA vendor has its own bitstream file extension (e.g. .bit (Xilinx), .sof (Altera))

 FPGA programming:
e Bitstream is loaded into the FPGA through JTAG
o [onfiguration data may be stored in on-board FLASH and loaded by the FPGA at power up

 Multiboot/Safe FPGA configuration

Golden image
(bitstream 1)

lser image

FLASH TFFFFFh (bitstream 2)

Manual Trigge:
User Image

(bitstream Z)
400000k ED FPGA Pawer cycle (INCORRECT)

/ Fallback (EI]RRIMED)\

User image
(bitstream 2)
CORRUPTED
or
INCORRECT

(bitstream 1)
000000k Golden image

(bitstream 1)

Multiboot/Safe FPGA configuration diagrams

Manual Trigger

FPGA gateware (firmware) design work flow
Simulation

 Event-based simulation to recreate the parallel nature of digital designs
o Verification of HDL modules and/or full systems
 HDL simulators:

 Most popular: Modelsim

o [Other simulators: Vivado Simulator (Xilinx), lcarus Verilog (Open-source), etc..

 Different levels of simulation

o Behavioural: simulates only the behaviour of the design Fast
o Functional: uses realistic functional models for the target technology

o Timing: most accurate. Uses Implemented design after timing analysis Very Slow

Example of simulator wave window
T

4 (simple_delay/delay_rst

4 [simple_delay/delay _clk

Test Bench < jsimple_delay/delay_ena
4 [simple_delay/delay_Id

B4 [simple_delay/delay |d_value

) i
DEV“:B undEl' TESt B [simple_delay/s_count
+ (DUT) # fsimple_delay/s_delay_done
u

FPGA gateware (firmware) design work flow
In-System Analysers & Virtual |/0s

* Your design is up... and also running?
Most FPGA vendors provide in-system analyzers & virtual 1/0s
Can be embedded into the design and controlled by JTAG

Allow monitoring but also control of the FPGA signals

Minimize interfering with the your system by:

Placing extra registers between the monitored signals and the In-System Analyser

e |tis useful to spy inside the FPGA... but the issue may come form the rest of the board!!!

* Remember... it is HARDWARE Example of Virtual |/0s (Xilinx VIO)

Example of In-System Analyser (Altera SignalTap) B vocoe.xva o LA
log: 20064050 click te insert times bar
Type |Atias|.i2] g 1 2 ? & 3 6 1
o i 013h i D1zh ¥
= '
- | |
= |
i Lk 8CBCh ¥ O0BCh 000%h CCBDh %
= = J—
g | I
ER g
G
=
“GF ' _—————————————————————————
= L : FFFFh i 77

FPGA gateware (firmware) design work flow
Debugging Technigues

FPGA gateware (firmware) design work flow

Debugging Technigues

Divide & Conquer

B AUXCIK CLKOUTs

CLOCK SYNTH.

NTTER CLEANER
(CDCEG2005)

> PRI CLK
SYNC

SEC CLK
CTRL

i

VE_LED[3]

AMC_P1

VOLTAGE
SUPERVISOR

'GBT PHASE
MONITORING

B RESET IC

SYSTEM CORE

MGT REFCLKs FABRIC CLKs FPGA OUT TCLKB
Hh sec ik
[sPp [1: 4] MGT et
PRICLK FMCDP[0: 3] MGT -
CDCE_CLKO_GTXEL (SFP) V6_LED[1:2] M
CDCE_CLK3_GIXEL (FMC1) SNEz:ol S
WB_SLV[0:N]
AMCP[2: 3]
AMC P[12:15]
1PB_SLV[O:N] [MLVDS) AMC P[17:20]
SYS_USER_PCle
5¥5_SERIAL_PCle 43\ fmnc pia; 7] MGT I
— — — [Yamcplz1] »
7 .77777777 }AMc_rl¢-+
[r—
L(EINI.IZAQB&:\E |4"’ FMCL 105 (S
—— FVICL CLKs it
= IP & MAC Addr FMC1 CTRLES
FABRIC P
CLKs ‘ o pcanme |43 rmcz 105
p— FMC2 CLKs
USER_LOGIC __ MGT REFCLKs FMC2 =

79

FPGA gateware (firmware) design work flow
Debugging Technigues

Divide & Conquer

FPGA gateware (firmware) design work flow

Debugging Technigues

Divide & Conquer L
8-bit
Clock p> B-bit Counter =g | Address
[ncrement Reset
A RAM
M 256x1B-bit
Pattern Data Valid Flag Write Ensble
Generator Data {B-bit
Reset Data Reset
_ / Reset —— f

81

FPGA gateware (firmware) design work flow
Debugging Technigues

Divide & Conquer

Follow the chain

v

8-bit
P> 8-bit Counter g | Address
[ncrement Reset
A RAM
236 xI16-bit
Data Valid Flag)
Write Enable
Data 16-bit
Data Reset

82

FPGA gateware (firmware) design work flow
Debugging Technigues

Divide & Conquer

Follow the chain

v

8-bit
P> 8-bit Counter g | Address
[ncrement Reset
A RAM
236 xI16-bit
Data Valid Fla)
Write Enable
Data 2
Data Reset

83

FPGA gateware (firmware) design work flow
Debugging Technigues

Divide & Conquer

Follow the chain

Data Valid Fla

Write Enable

Data

i 3 i 8-bit L
> = | Address
Inc t
RAM
236x1B-bit

Reset

}

84

FPGA gateware (firmware) design work flow
Debugging Technigues Fallow the chain

Divide & Conquer L
< 3 5 B-bit
> = | Address
Inc t

Data Valid Fla

85

FPGA gateware (firmware) design work flow
Debugging Technigues Fallow the chain

Divide & Conquer : L
3 8-bit
> = | Address
nc N t @
Data Valid Flag
Wr

86

FPGA gateware (firmware) design work flow
Debugging Technigues Fallow the chain

Divide & Conquer L
< 3 5 B-bit
> = | Address
Inc t
&) J _.@
w

87

FPGA gateware (firmware) design work flow

Debugging Technigues Fallow the chain
Divide & Conquer

8-bit

>
Inc

Data Valid Flag

w W

88

FPGA gateware (firmware) design work flow
Debugging Technigues

Divide & Conquer

Clock

Follow the chain

v

Address

Open the box

89

FPGA gateware (firmware) design work flow

Debugging Technigues Fallow the chain
Divide & Conquer

v

Address

We are debugging HARDWARE!!! <

FPGA gateware (firmware) design work flow
After debugging...

FPGA gateware (firmware) design work flow
After debugging...

FPGA gateware (firmware) design work flow

After debugging...

O =
i '_ = -
o 54 :
= N g
" - P

%% 7

93

FPGA gateware (firmware) design work flow
After debugging...

e Documentation @A‘] CCCCCC s

GBT-FPGA user manua 1

FPGA gateware (firmware) design work flow
After debugging...

« Documentation @AV] CCCCCC »
GBT-FPGA user manua 1
4 swvn_test
: branch
e Maintenance s). tags |
version 1.01
: gbt_fpga_0_1_0_beta

4 ghbt_fpga_3_0_0
; gbt_fpga_3 0.1
3 ghbt_fpga_3_0_2
; ght_fpga 310
; ght fpga 311

FPGA gateware (firmware) design work flow

After debugging...
 Documentation @ ceRn pr-gs

GBT-FPGA user manual

4 swvn_test
branch
 Maintenance 4) tags
; gbt_fpga_0_1_0_beta
ghbt_fpga_3_0_0
gbt_fpga_3 0.1
ghbt_fpga_3_0_2
ght_fpga 310
ght fpga 311

version 1.01

Re: GLIB: question on GBT

Mon 22/07/2013 1756
Manoel Barros Marin

e ...and maybe User Support

Manoel,
ves,] would love to be included in the GBT-FPGA-users mailing list.

And thanks for the tip about using the GBT-FPGA reference design.

best regards,

Advanced FPGA design

ISOTDAQ 2016 @ Rehovot (Israel)
29/01/2016

Dutline:

Jsirainhelnieviousyiesson
JHEYiconeeniSfahiguygHnl
JERGAyalewarne]immwareniesiyniuvoxkiiow
e SUMMary

Q

Manoel Barros Marin BE-BI-QP

summary
FPGA - Wikipedia
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

Key concepts about FPGA design

o FPGA gateware (firmware) design is NOT programming

 HDL are used for describing HARDWARE

o Timing in FPGA gateware (firmware) design is critical

FPGA gateware (firmware) design flow

e Plan, plan and plan again

 Modular and reusable system

e [Coding for synthesis

e Take care of your resets and clocks schemes

 [lock Domain Crossing is tricky

 You must properly constraint your design

e [ptimize in your code but also with constraints and FPGA design tool options
o Read the reports (Synthesis, Implementation & Static Timing Analysis)
 Try to be methodic when debugging & use all tools available

A running system is not the end of the road... (Documentation, Maintenance. User Support)

98

summary

FPGA - Wikipedia
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

Key concepts about FPGA design

o FPGA gateware (firmware) design is NOT programming
 HDL are used for describing HARDWARE

o Timing in FPGA gateware (firmware) design is critical ...for Geeks
FPGA gateware (firmware) design flow

e Plan, plan and plan again

 Modular and reusable system

e [Coding for synthesis

e Take care of your resets and clocks schemes

 [lock Domain Crossing is tricky

 You must properly constraint your design

e [ptimize in your code but also with constraints and FPGA design tool options

o Read the reports (Synthesis, Implementation & Static Timing Analysis)

 Try to be methodic when debugging & use all tools available

A running system is not the end of the road... (Documentation, Maintenance. User Support)
99

summary

FPGA - Wikipedia
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

Key concepts about FPGA design

o FPGA gateware (firmware) design is NOT programming
 HDL are used for describing HARDWARE

o Timing in FPGA gateware (firmware) design is critical ...for Geeks
FPGA gateware (firmware) design flow

e Plan, plan and plan again

 Modular and reusable system

e [Coding for synthesis

e Take care of your resets and clocks schemes

 [lock Domain Crossing is tricky

 You must properly constraint your design

e [ptimize in your code but also with constraints and FPGA design tool options

o Read the reports (Synthesis, Implementation & Static Timing Analysis)

 Try to be methodic when debugging & use all tools available

A running system is not the end of the road... (Documentation, Maintenance. User Support)

\ But it works © 100

summary

FPGA - Wikipedia
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by

a customer or a designer after manufacturing - hence "field-programmable”.

Key concepts about FPGA design é
o FPGA gateware (firmware) design is NOT programming

 HDL are used for describing HARDWARE

o Timing in FPGA gateware (firmware) design is critical ...for Geeks

FPGA gateware (firmware) design flow

) ;'ag'lp'a” a;'d p'a”halgai“ Where do | find more info about this??
" WOOUIAY BN FEUSELTE SYSTEM There are nice papers & books but...
FPGA vendors provide very good

e [lock Domain Crossing is tricky dl][:UITIEEItEItiI]I.l ﬂh[.lllt all topics

e You must properly constraint your design mentioned in this lecture

e [ptimize in your code but also with constraints and FPGA design tool options

e [Coding for synthesis
e Take care of your resets and clocks schemes

o Read the reports (Synthesis, Implementation & Static Timing Analysis)
 Try to be methodic when debugging & use all tools available
A running system is not the end of the road... (Documentation, Maintenance. User Support)

\ But it works © o

Acknowledges

e Markus Joos (CERN) & organisers of ISOTDAQ-16
 Andrea Borga (NIKHEF), Torsten Alt (FIAS) for their contribution to this lecture
 [hodri Jones, Thibaut Lefevre, Andrea Boccardi & other colleagues from CERN BE-BI-OP

102

Any
Uuestions?

e

