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« The need for tracking info at the Trigger of High Energy
Physics experiments and how to do it fast

« A specific example: the FTK (Fast TracKer) in ATLAS; tracking
In two stages:

- Pattern matching with Associative Memories
- Refined track fitting with FPGAs

« Basically you'll see that:

*if you want to avoid or cannot afford calculating something
time consuming:

- split the problem and use pre-calculated patterns and
quantities.
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Probability of interaction ~ cross section:
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Probability of interaction ~ cross section:
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Probability of interaction ~ cross section:
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Looking at many & complex events
every 25ns two proton bunches cross each other
- a superp05|t|on of >25 pp coII|S|ons

Atlas event with a Z boson decaying to two muons and 24 additional interaction vertices.

The Trigger and Data Acquisition system,

* watches 40M such “events” (bunch crossings) / sec
- O(1) billion pp interactions per second

* select online “the most interesting” O(1k) events/sec
(1: 1 Million pp interactions deemed interesting enough to keep)

* and log them for offline use with a resolution of a
~100 Mpixel camera (100M channels: total ~1.5 MB/event)
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Trigger at 2 stages:
Levell (L1: fast, no detailed info) &

High Level Trigger (HLT: slower, using detailed info)

« Trigger & DAQ : Select events and get the data from the
detector to the computing center for the first processing.

Permanent
storage
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The more you know about the events, the easiest
you select the “signal” and reject the "background”

hen there is limited time budget (L1 trigger): decide
based only on the muon and calorimeter systems

But may need information from the inner tracker as

early as possible to make an “educated” decision
and keep as much signal as possible

e.g., 2 “jets” of tracks, which are usually boring,
they could actually be

H->bb “ H>1 T
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Atlas event with a Z boson decaying to two muons and 24 additional interaction vertices.

o —

« Connecting the “hit” readout cells
from one detection layer to the other

 traces the charged particle's path as it
moves radially outward and its' position
IS measured in each detector layer

2 “real tracks”
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2 “real tracks” + extra hits
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Tracking is a combinatorics problem:
WhICh combmatlons of h|ts ﬁt track hypothe5|s7

Atlas event with a Z boson decaying to two muons and 24 additional interaction vertices.

But when you look

S at this event/picture,
e you just see hits!

You have to find the tracks...

— Lots of hit combinations to try

p_>*<_p — a huge combinatorics problem
- becoming worse and worse

as luminosity increases
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FTK (Fast TracKer):
dedicated hardware helping the HLT,
by doing the tracking before the HLT

Permanent
storage

Fast TracKer (FTK)
For each event accepted by L1

(100kHz),
find all its tracks in <100 psec
— x1000 faster than the HLT farm

of PCs
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ATLAS' Fast TracKer (FTK) processes all Level-1 accepted events (100kHz)

Output: all tracks w/ pT>1 GeV available to HLT. Typical FTK latency ~100us,
compared to O(50ms) HLT

Advantages: high-bandwidth connection with detector &
HW optimizedﬁi{f'?r the specific tasks

N ~ Example:
' R-phi view of Barrel region:

llllllllll
N S |
w0 | n

Track crosses 12 detector Iayers 5‘
M’Sﬁ@qﬁ}/

mqrd - Total # of readout channels: 98M
PIXELS: 80 millions + IBL: 12M

SCT: 6 millions
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Detector For L2: SVT trigger at CDF
, For L2: FTK in ATLAS

design for

e For L1? : CMS & ATLAS

" Forward scT

1. Here FPGAS cluster

Data transfer hits with sliding window

1. Data and get their centroid

formatting & as the hit position.

clustering Forward the data to
AW proper Processing Units

_ _ 2a. Pattern Associative Memories
2. Processing Units (PUs) | | Recognition

made of these two steps N

2b. Track
Fitting FPGAs

Each PU, takes care of
a given detector slice (“n-¢ tower”
J (“n-¢ ) \A

In FTK: 64 towers HLT

ISOTDAQ2016, Weizmann, 29/1/'16 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs- FTK 15



1. Input & Data “Formatting”:

cluster adjacent hits,
find the position of each cluster,

forward them to the Processing Unit
responsible for this geometrical n-¢ region

- towers
FPGA replica of pixel matrix \
$7XLINX |
V|RTE>55
) T J
: 5 = Significant data reduction
S by using hereafter only the
3 - position of each cluster
=
S
n direction --> .
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Detail: Clustering algorithm how-to

NIM A617:254-257,2010

FPGA replica of pixel matrix IEEE TNS, vol. 61, no.6, pp.3599-3606, 2014
== ) doi; 10,1109/TNS.2014.2364183
mu| SPARTAN -6 / ~N
/I\ B J CSGIVAABCOBA2 I ] d ” —‘-l__c>_l - -y |
c | mo%ileiits I I select :
3 ‘ \_ Y top most hit y
S >_—|_i-|_—|~
=Y
v | propagate [
()] .
, - 235 selection
n direction --> 038 lthrough cluster
1st phase: = J
> Pixel module: a 328x144 matrix. E’E’
> Replicate a part of it (8x164) inhw ©3& |  readout
matrix. o cluster |
9 ®©

> Matrix identifies hits in the same

|
. p
“cluster” (= adjacent pixels)

2"d phase: 2nd pipeline stage v

> Hits in cluster analyzed (averaged)gussnaysyy
to get “the hit position”, used in
all next steps analysis

> Flexibility to choose algorithm!

Average e .
calculator
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1. Find low resolution - Y Pp— ~
track candidates N Vi W — 4 O S—
Called l‘roads”. [T 1 I\I\ﬁ I\\I [ T T T T T T T 1 I/I/.I /[/I I\I\{\I\I\I [ T T 171
Solve most Of the \I IOIIII\F\illIIIIIIILli/VIIIIIINO\I\\)IIIIII/
combinatorial Pattern recognition w/ Associative Memory
problem. Originally:

M. Dell’Orso, L. Ristori, NIM A 278, 436 (1989)

2. Then track fitting (. )
inside the roads. — ° A )
Thanks to 1st o £ \\ y

step, this is much

. http://www.pi.infn.it/~orso/ftk/IEEECNF2007_2115.pdf
easier.

Excellent results with linear approximation!
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2a.
The coarse pattern matching first

Using 8 out of the 12 silicon layers
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The Event

=

=

=

=

The Pattern
Bank

Because the detectoéﬁ
has a finite resolution (“bin size”),
many different tracks generate the
° " same hit pattern,
So we have a finite number of patterns

and a finitie-size pattern-bank.
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Training: simulated tracks to find possible
patterns

Pattern #1: ewow» 1.
Each possible track

becomes a

0. 2y,
Pattern #0: —

11 12 14 15

Pattern Bank:
PattO 11 12 14 15

Pattl 06 06 07 07

Patt2 15 17 18 20

2.
Pattern #2: All patterns are stored in a
“pattern bank”
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Coarse track finding = pattern matching: does
your event contain any of these patterns?

3.
Compare the hits

Pattern Bank: in your event with

PattO 11 12 14 15
Pattl 06 06 07 07
Patt2 15 17 18 20
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Compare ALL the hits in each event with
ALL the stored patterns.

4.
After all comparisons

re don
Pattern Bank: are done, we have

PattO 11 12 14 15

Patt2 15 17 18 20
1 0 layer 1 lair 2 liir 3
11 6

12 10 (7) 14
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e event




How to match data to patterns?

How to do the
Comparison?

&
Pattern Bank: * & Check each of the

5x3x6x6 = 540
hit combinations
to each pattern?

PattO 11 12 14 15
Pattl 06 06 07 07
Patt2 15 17 18 20

{f.

layer 0O layer 1 layer 2 layer 3
] 2 3 1
11 t G T
12 10 7 14
15 16 20
22 18 25
28 30

e event
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NIO = number of straight lines crossing the detector layers

m = # of layers :
- : n= #bins per IaB

—TT1T—T

LR M e
=T

Np:(m—l)n2

Can convince yourselves about this, with m=4 in the above drawing

For a detector with 8 layers, with 1M channels/layer, Np = 7 10% 11}

( Re-bining with 2-channels per bin: n -» n/2 means Np = %2 Np )

ISOTDAQ2016, Weizmann, 29/1/'16 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs- FTK 26



and search time are critical

patterns
 Need a lot of memory for the patterns:

- OK, can use larger (“coarser”) bins for 1st pattern
matching (will come back to this later).

« But still, you have to match hits with patterns fast:

- Linear search, of the pattern-table (“brute force”) is
the slowest.

- If list of patterns is ordered, can do “binary” search:

e Pick the middle element in the list,

« Compare the data to the pattern to find the good
half of the list,

e pick the middle of the new (halved) list, and so on.
Example: The list to be searched: L=1346 8 9 11. The value to be found: X = 4.

Compare X to 6. X is smaller. Repeat with L = 1 3 4.
Compare X to 3. X 1s bigger. Repeat with L = 4.
Compare X to 4. They are equal. We're done, we found X.

ISOTDAQ2016,



Speed is extremely important at
triggering.
Find tracks at ultimate speed
— use "Associative Memories”
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VIS STRUCTURES FOR TRACE FINDENG

Maure DELLORSO
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We discuss the architecture of a device based on the concept of associative memory designed to solve the track finding problem,
typical of high energy physics experiments, in a time span of a few microseconds even for very high multiplicity events. This
“machine” is implemented as a large array of custom VLSI chips. All the chips are equal and each of them stores a number of
“patterns”. All the patterns in all the chips are compared in parallel to the data coming from the detector while the detector is being

read out,
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« CAM = a memory that is accessed by its contents, not
its location.

 E.g., while in a RAM we ask:

- what do you have in location xyz?

* In a Content Addressable Memory (CAM) we ask:

- Are there any locations holding the value abc?
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« Binary CAM (simplest):

- uses search words consisting entirely of “1” and “0”

Example:
stored word of = —emmmemmmmmee- > "10110" (“one_pattern”)

It will be matched by the search word: "10110" (“the data”)
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ro Layer 1 Layer2 Layer 3
ONE PATTERN M

A
I ii
ﬁafoﬁsﬁ n e Ml ]
= 3
{6,6, 7,7} Patt 1§ 1 1»FF [12 —--IlF 14 +T 15 FI
@)
1 1 1 1 L =
Patt 20 15ls{rf [17 |»[rf [18 |-»{ff [200=FF S
ol e 1 1 |7
Patt 3 —=FF — - FF — FF —= FF
L >

A A A 4
HIT HIT HIT HIT
LayerO Layerl Layer2 Layer3
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Layer O Layer 1 Layer2 Layer 3

ONE PATTERN A
ﬁwo{@»ﬁf e e O e ]
| )

{6,6, 7,7} Patt 1R 11F={FF| [12 |=|rr| [14 |={FF| [ 15}=FF

| 01
patt 2(15I=lF [17 1»{r] [18 |-l [200=F] |2
; i ¢ ) |7
Patt 3 —=FF — - FF — FF —= FF
As soon as data * ' )
are present from A A A A
each Layer, they ] HITO ] HITl HIT , HIT
are put on the bus, aygr ayeé Lay§r Layf_B

to be seen
by all stored words
along this bus
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Layer O Layer 1 Layer2 Layer 3

ONE PATTERN A
F-‘u’r’r 0 'oe *T worl +T “‘WF—? ]
L )
{6,6, 7,7} Patt 1R 11F={FF| [12 |=|rr| [14 |={FF| [ 15}=FF
1 A SN
patt k1Bl (17 1ol (18 1=l (200 |2
1S N =
Patt 3 —=FF — - FF — FF —= FF
As soon as data * ' ' )
are present from A A A A |
each Layer, they HIT HIT HIT vt Flags raised
are put on the bus, LO Layeél Lay§r2 Layf_B if matching
to be seen In_each hit
by all stored words independently

along this bus
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Layer O Layer 1 Layer2 Layer 3

ONE PATTERN w} A
F-‘u’r’rO éy&g wok ]
| i E )
{6,6,7,7}  port 1{11)=lF] [12}=[rd [14 [=r] [15}=[F
1 Y
i [11]111 1111 I =
Patt 20 15ls{rf [17 |»[rf [18 |-»{ff [200=FF S
1 e 1 N =
Patt 3 —=FF — - FF — FF —= FF
As soon as data * ' ' )
are present from A A A _
each Layer, they HIT HIT vt Flags raised
are put on the bus, Layerl Lay§r2 Layf_B if matching

to be seen

In_each hit
by all stored words @ @ 6 @ independently
along this bus ' ]
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Layer O Layer 1 Layer2 Layer 3

ONE PATTERN w ,LU A
F-‘u’r’rO éy&g)ﬁ (ot ]
e || )
{6,6,7,7}  port 1A11)=FF] (12 | =[r] [14 |=[Ff [15B=IF
’ v N [
Patt 2{ L5}={FF [1711——- i |18 l={F [ 200=]FF ?I_
; : ' £
Patt 3 —=FF — - FF — FF —= FF
As soon as data * v ' )-
are present from A ) A
each Layer, they HIT HIT ar AND all flags
are put on the bus, Layerl Lay§r2 '-ayf_r3 togeta
to be seen complete
by all stored words @ @ 6 @ pattern
along this bus 12 10 matching.
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Result:
Matched
Patterns

pattern Bus_Layer= 0= Bus_Layer<l» Bus_Layer<d> Bus_Layer=T= —_

/\ | “Roads”
B[:ft‘_ljj pattem O Inwlur ﬂ-? |ayer 1—.? layer 2

s AR i

.-r:-rl-'\nn r : %

e e e | e [ E

One flip-flop —— | | | Q

per layer P’ W I_-? —————— %

stores the — o
match results e e [ ;

,_’_,-"

Flexible input: "mimm# g ! o

position, time, A A )
objects (e, u, v) HIT HIT HIT HIT

Pattern matching is completed as soon as all hits are loaded.
Data arriving at different times is compared in parallel with all patterns.
Unique to AM chip: look for correlation of data received at different times.
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v EH (90’s) Full custom VLSI chip - 0.7um (INFN-Pisa)
| * 128 patterns, 6x12bit words each, 30MHz
F. Morsani et al., IEEE Trans. on Nucl. Sci., vol. 39 (1992)

Alternative FPGA implementation of SVT AM chip
P. Giannetti et al., Nucl. Intsr. and Meth., vol. A413/2-3, (1998)
G Magazzu, 15t std cell project presented @ LHCC (1999)

Standard Cell 0.18 pum — 5000 pattern/AM chip
SVT upgrade total: 6M pattern, 40MHz
A. Annovi et al., IEEE TNS, Vol 53, Issue 4, Part 2, 2006

AMchip04 —65nm technology, std cell & full custom, 100MHz
Power/pattern/MHz ~30 times less. Pattem density x12.

First variable resolution implementation!
F. Alberti et al 2013 JINST 8 C01040, doi:10.1088/1748-0221/8/01/C01040

{ FTK R&D J
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~ P 90’s Full custom VLSI chip - 0.7mm (INFN-Pisa) 128 patterns,
e P 6x12bit words each (F. Morsani et al., The AMchip: a Full-custom
MOS VLSI Associative memory for Pattern Recognition, [EEE
Trans. on Nucl 5ci.,vol. 39, pp. 795-797, (1992).}

E P 1998 FPGA for the same AMchip (P. Giannetti et al. A
B0 11 T Programmable Associative Memory for Track Finding, Nucl. Intsr.
and Meth., vol. A413/2-3, pp.367-373, (1998) ).

P 1999 G. Magazzi, first standard cell project presented at LHCC

P 2006 Standard Cell UMC 0.18 pm 5000 pattern/AMchip for CDF
SVT upgrade total: 6M patterns (L. Sartori, A. Annoviet al, A VLSI
Processor for Fast Track Finding Based on Content Addressable
Memories, IEEE TNS, Vol 53, Issue 4, Part 2, Aug. 2006 )

P 2012 AMchip04 2k patterns in 14mm2, TSMC 6#5nm LP
technology Power/pattern/MHz 40 times less. Pattern density x12.

First variable resolution implementation. (F. Alberti et al 2013
JINST 8 C01040, doi:10.1088/1748-0221/8/01/C01040 }

> | 2013-2014 AMchip MiniAsic and AMchip05

a further step towards final AMchip version.
Serialized input and output buses at 2 Gbs, further,
power reduction approach. BGA 23 x 23 package.

> (2014-2015 AMchip06: final FTK version of the
AMchip for the ATLAS experiment .

'.AMchipOS: switched to serialized |10 (11*2Gbs)
AMchip06: the FTK AM chip with 128k patterns/chip
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Photomultipliers

Position: z
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For exaple, task = Associate the measured X1 and X2:
e.g., X1 =5 with X2 =38

1 Squares represent all possible patterns

X2 in the (X1,X2) phase-space
*** This is the “pattern bank”
-
9
8
7
6 !
2 PATTERN MATCHED:
g (X1,X2)= (5,8)
1

12 34567809

>

X1
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2b.
Now that we have a system that
does pattern matching as the data
are coming in,

storage problem: how do we deal

with the number of patterns which

can be big in the high-granularity
detectors?
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Wide patterns Thin patterns

I L]
[ ]
[ ||
[ ] []

The choice is a compromise

High efficiency More patterns (hardware)
with less patterns (hardware) for same efficiency less fakes l
BUT more fakes Fakes are workload for track fitter  "®

Recall: the number of patterns Np, with m layers, of n bins each, is Np:(m—l)n2
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Pattern size Reduce Pattern size (half size)
r-¢: 24 pixels, 20 SCT strips r-¢: 12 pixels, 10 SCT strips

01 0.1

1 G

O ——+Se0 200 7] 300 ban 00 M";n:n]ﬂr % Z00 400 600 800 B;ln-:edi'{im ';Inl;ﬂ
65M P

<# matched Batternsfevent @ 3E34> = 342

# roads (large fake fraction) represents

8 . attern ;
ot z: 36 pixels P: z: 36 pixels
S N Size
= t q
:. © 1 — =" 1 >
== R F ; P = 90%
R
S < Coverage: pattern efficiency |,
x> Efficiency: track efficiency i
L % 05
Qg os — Coverage 0.4 Coverage
é g 0.3)- — Efficiency 0.3 cfficiency
O 0z 02
Ll = :
:.J o
o
< ©

e workload for the track fitter
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Use the feature of “ternary CAMs”
« Ternary CAM: added flexibility to the search

- allows a third matching state of "X" or "Don't Care" for
one or more bits in the stored pattern word: one
pattern matches various data words

« Example: a ternary CAM might have a
stored word of = —mmemmmmmeeeee- > "10XXO0" (“one_pattern”)
This will match any of 4 search words: "10000" (“the data”)
"10010" (“the data”)
"10100" (“the data”)
"10110" (“the data”)

The added flexibility comes at additional cost:

- the internal memory cell must now encode three possible
states instead of the two of binary CAM. This additional
state is typically implemented by adding a mask bit
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Alberto Annovi
* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics

ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856
* “Variable resolution Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013

+ For each layer: a "bin” is identified by a number with DC bits (X)
+ Least significant bits of “bin” number can use 3 states (0, 1, X)
+ The “bin” number is stored in the Associative Memory

« The DC bits can be used to OR neighborhood high-resolution bins,
which differ by few bits, without increasing the number of patterns

Pixels:

SN
Using binary format
01010” selects bin 10
8 9 m 12 13 “0001x” selects bins 2 or 3

“1x000” selects bins 16 or 24
m B B e e “Ox11x” selects bins 6,7,14, or 15

m 25 26 27 ---- \“111xx” selects bins 2’8 'zn ?:1 )
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- Majority Logic: Only require N out of M layers have a match

- Gains efficiency

- Variable Resolution Patterns (Don’t Care Bits)

With 2 DC bits: Apart from reduction in fakes (factor 7),
we save also a factor 5 in the size of the pattern bank!

No variable resolution:
3 patterns needed

1 bit variable resolution: 3 bit variable resolution:

1 pattern needed 1 pattern with 1/16th volume

N y | N t |
T | ] | T~ ]

Technique can be exploited by any coincidence based trigger!

Alberto Annovi

* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics
ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856 -

* “Variable resolution Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013 44



3.
Now that we have found some
matching patterns

each matching pattern defines a
‘road” for the refined tracking
go and
fetch all the (few now) hits it
contains, and we should
fit them to a helical track to measure
the track parameters precisel

ISOTDAQ2016, Weizmann, 29/1/'16 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs- FTK 48



* Pattern recognition
layers
» 8 layers track fit
e full resolution hits
* reject most fakes

SCT layers

e 2 2 S

5 parameters &
d0, z0, eta, phi, PT,y” | BRliseelo]gellar1es
Cull resolutlon i3 (local to each

detector module)

Di = Z C@lml + q;
i IBL! | | | I

Track fitting in FPGAs w/ many Digital Signal Processors (DSPs)
BUT: Linear approximation: get a set of linear equations
“each parameter depends linearly on the hits” — fast

multiplications with pre-computed constants ~1 Gfits/s per FPGA

Pixels
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* Pattern reco;
layers

» 8 layers track fit

e full resolution hits

* reject most fakes

» Extrapolate track to
other layers NN

 Look for hits in a
narrow region

* Full 12 layer fit -

pnition

SCT layers

¢ 4 £ £

Pixels

IBL

Done on FPGASs, on a “2nd stage” board
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 E.g., In @ computer if normal math calls are time-expensive:

« sin(x) = Taylor expansion gives a polynomial to
calculate

e Or, use Look-Up Tables (LUTs = precalculated values
stored in tables) and interpolate between the
neighbouring sin(x) to get the value you ask for

sin(x)=x— frac x’6+frac x° 120

[
. function lookup_sine(x)

' x1l = floor(x*1000/pi)
: yl := sine table[x1] 0 I [ T
: y2 := sine table[x1+1]
:
|8

return yl + (y2-yl)*(x*1000/pi-x1)

Linear interpolation on a
portion of the sine function
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Working configuration

. . ] DC bits group detector
» High resolution patterns: (15x36),,;,X16 channels together and

— Pixels: 15 channels along ¢, 36 ch. along n increase the pattern
— Strips: 16 strips resolution

« Background events with 69 superimposed pp collisions
— Instantaneous luminosity 3*103¢ Hz/cm?

« Hardware constraints (for each of 64 n-¢ towers)
— # AM patterns < 16.8 * 10°
— #roads/event <16 * 103
— #fits/event <80 * 10° Work loat!| for track fitter
d ___
#AM Efficien roads/ fits/evt ™

pattern cy % evt *10° 103
*106

16.8 93.3% 3.2 26
16.8 91.2% 6.9 99

Coarse Max #

resolution DC bits
roads I layer

Barrel  (30x72),,X325,  2p,X st
Endcap (30x72),,x325,  2pX st

Alberto Annovi

* ANIMMA - A new “Variable Resolution Associative Memory” for High Energy Physics
ATL-UPGRADE-PROC-2011-004, doi:10.1109/ANIMMA.2011.6172856 =

* “Variable resolution Associative Memory for the Fast Tracker ATLAS upgrade”, ICATTP 2013 &>



FTK Technical Design Report (TDR): https://cds.cern.ch/record/15529537In=en
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2013-007/index.html

FTK Public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/FTKPublicResults
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The road to FTK: Content Addressable
Memory, the Associative Memory & FPGAsS

K. Pagiamtzis and A. Sheikholeslami, “Content-addressable
memory (CAM) circuits and architectures: A tutorial and survey,”
in IEEE Journal of Solid-State Circuits, vol.41, no.3, pp. 712-727,
March 2006

« M. Dell'Orso and L. Ristori, "VLSI Structures Track Finding", Nucl.
Instr. and Meth. A, vol. 278, pp. 436-440, 1989.

« W. Ashmanskas et al., "The CDF online Silicon Vertex Tracker",
Nucl. Instr. and Meth. A, vol. 485, pp. 178-182, 2002.

« A. Annovi, et al., “Associative memory design for the Fast TracK
processor (FTK) at ATLAS,” in IEEE NSS/MIC, 2009, Orlando, pp.
1866 - 1867.

 C.-L. Sotiropoulou, S. Gkaitatzis, A. Annovi, et al. “A Multi-Core
FPGA-based 2D-Clustering Implementation for Real-Time Image
Processing”, in IEEE Trans. on Nuclear Science, vol. 61, no. 6, pp.
3599 - 3606, December 2014.
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https://cds.cern.ch/record/1552953?ln=en
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2013-007/index.html
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/FTKPublicResults

« FTK uses the AMchip06, an Associative Memory with

- 128k patterns of 8 words x 18 bits each word
- high speed serial links

- variable resolution (up to 6 ternary bits)

- low power

- 8 X 16 bit comparisons at 100 MHz

« These ideas and technology will not be restricted to FTK
in ATLAS

- Future applications in HEP (tracking in L1 for
ATLAS and CMS...)

- Applications outside HEP (medical imaging, smart
cameras, genomics, ...)
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« Split the problem in a fast (coarse) one, and a refined one
working with much reduced data.

(you know now that we do this all the time in the trigger)

 Use pre-calculated patterns & values wherever you can: if
you get the desired precision, you gain a lot in time

...And time is precious in the online world!

« We saw the example of the Fast TracKer upgrade in ATLAS,
using

- AM-based pattern matching with “AM chip” (ASIC),

- refined track-fitting and almost everything else
needed (from formatting to smart databases, to |/0O)
in powerful modern FPGAS
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« What presented here is not the only way to solve the
tracking problem fast.

- Hough transforms in FPGAs,
- GPUs for the HLT farms etc.

 But nothing can be as fast as doing the tracking while
reading your data, as they pass through the system.

- If you can not afford to be slower, then you'll
probably use an Associative Memory.
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« V. Halyo, et. al., “GPU Enhancement of the Trigger to Extend
Physics Reach at the LHC,” Journal of Instrumentation 8
P10005, 2013.

 C. Gentsos, F. Crescioli, P. Giannetti, D. Magalotti, S.
Nikolaidis, “Future evolution of the Fast TracKer (FTK)
processing unit”, PoS (TIPP2014) 209

 A. Annovi, et al., “Associative Memory for L1 Track Triggering
in LHC Environment,” in IEEE Trans. on Nuclear Science, Vol.
60, No. 5, pp. 3627 - 3632, 2013.
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Pattern Recognition: beyond High Energy
Physics applications

P. V. C. Hough, “Method and means for recognizing complex
patterns,” U.S. Patent 3,069,654, 1962.

« R. O.Duda and P. E. Hart, “Use of the Hough transformation to
detect lines and curves in pictures” Communications of the ACM,
vol. 15, no. 1, pp. 11-15, 1972.

J. llingworth and . Kittler, “The Adaptive Hough Transform”, IEEE
Trans. On Pattern Analysis and Machine Inteligence, Vol PAMI-9,
No. 5, Sept. 1987, pp. 690-698.

e Xin Zhou, Yasuaki Ito, and Koji Nakano. “An FPGA Implementation
of Hough Transform using DSP blocks and block RAMs.” Bulletin of
Networking, Computing, Systems, and Software, Vol 2, No 1
(2013), pages 18-24.

« M. Del Viva, G. Punzi, and D. Benedetti. “Information and
perception of meaningful patterns.” PloS one 8.7 (2013): e69154.
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An announcement: MOCAST 2016
call for papers deadline Feb. 15, 2016

http://mocast.physics.auth.gr/

MOCAST

INTERMATIONAL CONFERENCE ON
MoDERN CIRCUITS AND SYSTEMS TECHNOLOGIES

i *

TOPICS FPAPER SUBMISSION REGISTRATION LOCATION HOTEL INFO CONTACT MOCAST

12 - 14 May 2016 Thessaloniki Greece
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Extras...
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[

http://ftk-iapp.physics.auth.gr/

This project aims to develop an extremely fast but compact processor, with
supercomputer performances, for pattern recognition, data reduction, and
imformation extraction in high quality image processing.

T

=

The proposed hardware prototype features flexibility for potential applications in a
wide range of fields, from triggering in high energy physics to simulating human
brain functions in experimental psychology or to automating diagnosis by imaging
in medical physics. In general, any artificial intelligence process based on massive
pattern recognition could largely profit from our device, provided data are suitably
prepared and formatted.

]
.|
|
]
1
I
|

The project has received funding from the
European Union's Seventh Framework Programme for research, technological development
and demonstration under grant agreement n.324318
Participants (2 SMEs and 4 Academic Institutions)

—
5 @ W o
¥ £
ﬂhn‘} : : kjﬁ/}‘i Prisma
FP7 Project  University of CAEN SpA Electronics
324318 - ; CNRS, France ABEE,
Pisa, Italy | Ttaly A
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« D. Emeliyanov, et al., “GPU-based tracking algorithms for the
ATLAS high-level trigger” in Journal of Phys. Conf., Ser. 396,

012018, 2012.

* J. Mattmann, et al., “Track finding in ATLAS using GPUs,” in
Journal of Phys. Conf., Ser. 396, 022035, 2012.

* Y. Ago, Y. Ito, and K. Nakano, “An FPGA implementation for neural
networks with the FDFM processor core approach,” International
Journal of Parallel, Emergent and Distributed Systems, vol. 28,

no. 4, pp. 308-320, 2012.
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Input Mezzanine card(IM)

+ Data Formatter(DF)

Dual HOLA card

Copy the hit from
ID and send to
FTK

IM: Receive the hits and
perform clustering

DF: hit sharing and provide
pipeline (the “custom switch”
to fan-out hits to the relevant
Processor for this n-¢ tower

Data / u!
Formatter |||

Processor Units: Auxiliary
card(AUX) +
Associative Memory Board(AM)

AM: pattern recognition in
SuperBin (“SuperStrip”)
resolution

AUX: a) mapping between hits
and SuperStrips”,
b) track fitting: pt, n, ¢, dO, z0

Second Stage Board(SSB)

Reduce the fake track using
remaining silicon layers.

Cluster
Finding
100 kHz
Event
Rate
Second Stage Fit (4 brds) -
¥
Track Data
o ROB FLIC
Raw Data FTK ROBs =
ROBs $Processing

* Red: involvement

of the group

\wto Level2 Interface Crate(FLIC)
= —SHLT

Send track info to HLT
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Input Mezzanine card(IM)

Processor Units: Auxiliary
card(AUX) +
Associative Memory Board(AM)

Cluster re C
Finding 8 o towers,
Z PUftower
100 kHz
Event eeee
Rate
Track Data '
i \_ ROB | FLIC
Raw Data —2FTK ROBs |=HLT
ROBs FProcessing

* Red: involvement of the group
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All boards for the full detector coverage are available at 2018

2009 Vs=7~8 TeV, L=6x10% cm< s, bunch spacing 50 ns

200

201 RUN |

a2 ~20-25 fb!

Vs = 13~14 TeV, L ~ 1x10% cm? s, bunch spacing 25 ns
ATLAS Upgrade Phase-0

Installation RUN I
ar Start data ~75-100 fb*
co tak Fyll detector Vs = 14 TeV, L ~ 2x10* cm? s, bunch spacing 25 ns
g lim cover = ATLAS Upgrade Phase-|
RUN il
I ~350 !

Vs =14 TeV, L = 5x10* cm? s, luminosity levelling

~ HL-LHC, ATLAS upgrade Phase-II
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FTK Latenc

) FTK has enough processing power at L=3x1034cm-2s-1 (operating rate ~60% )

Latency was rise-up by heavy event, but after such an event the latency

quickly return to the typical range.
; L=3x1034 MC sample (Z->mm 100 kHz\LVL1 rate.

zr/////

O

~=200

IEDDI | IE-DDI | I“IDDDI
Event number

Events

20

10|

ﬂ 1 1 L1 1 L1 1 L1 1 1 1
0 20 40 o0 80 100 120 140 160 180 200

Latency (u sec)

20 |

L b

ﬂﬂn.r

nlll

.

Averagely latency is ~50 psec and maximum on tail is ~ few handed
usec. It is enough speed for HLT requirement.




i

)

Efficiency w.r.t. Offline

—

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

FTK Track performance

All results are base line of FTK performance!

= T | T TTT | TTTT | T TTT | TTTT | T TTI | TTTT | TTTT | TTTT |_"L| E 3 0004 — T | T T T | T T T | T T T —]
;— ##*ﬁ-—_*:i :*: —+— - DO 00355 ATLAS Simulation, no IBL ]
= :*: = - E +1 + —~+ Offline TF

- = 0.003¢ - FTK MuE

- = - b g Sk .

= = 0.0025F e ok =

— — — _._ —

= 3 - o4 .

E_ _E 0.002 = ""_:::-.- ok =

- T — == - .

- E 0.0015F pe - =

= E - Ao >y .

= 3 0.001— —

= —— Mmuon = - A e ¥ .

= : 3 0.00051 W =

= —e-pion ATLAS Simulation, no IBL ™3 - A 1 .
|: IO TN T I N T T I O N T A A N T 0 A M M M :I %_ L L L L L L I L 1 1 | L1 1 | 1 L L I L L ] )(1 D

0O 10 20 30 40 50 60 70 80 90 0.6  -04 -0.2 0 0.2 0.4 0.6

. . p. [GeV] a/p_[1/MeV]
Tracks are offline like performar..c !

Difference is

- Algorism of hit clustering

- Lack of Low Pt patterns

- Broken of linear approximation.

- No TRT, not dray correction, etc

More than 90 % efficiency with respect to
offline.



Normalized Entries

Normalized Entries

b-jet tag trigger

T T ] L I I B
. ATLAS Barrel (m| <1.1) ]
10" Simulation <u>=60
= \s=14TeV — Offline Light-Flavor E
- — Offline b-Jet .
- —=- Re-fitted FTK Light-Flavor |
10°E = Re-fitted FTK b-Jet E
10°E
107 E E
—— T .
- -
10_5_ T ] I T T S T SN T SR N Y SO I
-20 -10 0 10 20 30 40
d, Significance
T ] L L B
- ATLAS Endcap (In| > 1.1)-
10 & Simulation <p> =60 _
= \s=14TeV — Offline Light-Flavor =
- — Offline b-Jet .
3 —- Re-fitted FTK Light-Flavor |
10 —=- Re-fitted FTK b-Jet =
10° =
E > *
¢
10 ' A E
- _+_ E
10° Ll l T N B
-20 -10 0 10 20 30 40

d, Significance

Base line of FTK!
- With IBL and refit of FTK track

- FTK can be run with Loser HLT jet PT

threshold

w 00
L - ATLAS \s = 14 TeV <> =60 A
Q - Simulation i
©  250F G(300 GeV) — hh— 4b 0454145 Tgh -
-+ HLTitems w/FTK ]
2[][] - ® HLTitems no FTK Zho5 425 2j45 Tight -
150 .
B 2b55 455 Medium -
i . i
100 —
i 2695.4/35 Tigh 2
: b75_4]75_Medium ]
50— . -
:I. Ll | Ll L I | LL 1 1 J L1 1 1 |. LI L L |. Ll L I | LL L | | Ll 1 1 ] L1 1 | |. LL L L:
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signal efficiency



AM = BINGO PLAYERS

FATTERNM & ® ¢
FATTERM 4
PATTERN 2 % ;
FATTERN 1 j FATTERM 3 FATTERMN M

Bingo scorecard

=

*Dedicated device: maximum parallelism
*Each pattern with private comparator
*Track search during detector readout

ISOTDAQ2016, Weizmann, 29/1/'16 K. Kordas - Pattern Recognition w/ Associative Memories & FPGAs- FTK 71



Pattern matching: does your event contain
any of these patterns?

4. Comparison
Of all hits to
All patterns
at once

Pattern
Bank:

Patt0 11 12 14 15
Patt1(06) 06 07 07
Patt2 15 17 18 20

)

o

3 The “event” is a list of hits
0 iIn each detector layer
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Pattern
Bank:

| Patt0(11)12 14 15
Pattli(}h o7( 07) |

Patt2 15 17 18 20
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Compare the hits in each event with ALL the
stored patterns.
4,

After all comparisons

re don
Pattern Bank: are done, we have

IPattG 12 14 15
Pattl @@@

Patt2 15 17 18 20

S ® 6 @

6
012 10(7) 14

event
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