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•Disclaimer: This is more a collection of pointers* than a tutorial, it’s a starting point…  

•(Almost) no code but a bias towards C++ and Python 
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Opening words

Acknowledgment: Slides are based on previous lectures by Erkcan Ozcan, see final slide for link

*further reading and tips in 
these boxes
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• Understand & define what you want to solve 

• Define the requirements for your software 

• Formulate a possible solution 

• Implement that solution 

‣ Which language? 

‣ Documentation 

‣ Debugging 

‣ Implement tests 

• Make sure it works 

‣ Verification 

• Deliver the code 

‣ Collect feedback 

‣ Portability to different platforms? 

• And back to the start
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•Developing software efficiently: 

• Avoid duplication of work 

• Avoid feature bloating  

• Ensure code quality 

• Deliver code timely 

•Many approaches to accomplish this, examples: 

• Iterative and Test-Driven Development 

•Most approaches have similar principles, different focus 

• on team management (agile development) 

• on actual programming style (lean development / TDD) 

• broad guidelines to deliver (iterative development)
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Development Cycles
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Choosing the programming language

The answer depends: 
- Analysis? 
- DAQ / Trigger? 
- External conditions? 

- Can you choose?

http://redmonk.com/sogrady/2014/01/22/language-rankings-1-14/
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Do you have 
to program?
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•Unified Modelling Language can be useful to sketch a 

design 

• Probably everyone has seen structure diagrams 

‣ Which classes (or larger components) have which 

relationship 

• Behaviour diagrams 

‣ What does the user do and what should be the result? 

• Interaction diagrams 

‣ How does data and control flow? 

•Forces you to be concrete! 
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•Maintainability 

• Is it easy to adapt to changed environment? 

• Can you cope with (slightly) changed requirements? 

•Scalability 

• Large data volumes 

‣ Think about data-flow and data layout 

‣ Try to avoid complicated data structures 

•Re-usability 

• Identify parts of the design that could be used elsewhere 

• Could these be extracted in a dedicated library?
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Things to keep in mind when designing
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•If you try to do everything at once: 

• You’ll probably end up doing nothing right 

• Generalising a problem before solving it: Probably not a good idea 

‣ Only do it when you have a use case 

• Write dedicated tools / libraries 

•Define features by writing a test that needs to be passed 

• Do not implement more than you need to pass that test. 

•Be pragmatic 
‣ Only do the abstract cases when it is likely that they will be used 

‣ Try to make everything as concise as possible (maintain readability) 

‣ Keep it simple!
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Avoid feature bloating
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•Do not reinvent the wheel 

• Many problems have already been solved 

• (Sometimes necessary — avoid dependencies) 

‣ Do not reject a library because of too many features 

• When using external libraries, look out for:  

‣ Active community? Well maintained? 
‣ Tested? 

‣ Look for: Last commit a few days ago, most over a year old 

•Getting to know new frameworks: 

• Before asking for advice: try the simple tools 

‣ Read the docs 

• Investing time in the beginning will pay off 

‣ Are there wikis? Has it been asked on StackOverflow? 

‣ python packages: try the ipython “help”
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Check for existing solutions

“Prof. Lucifer Butts and his Self-Operating Napkin”,  
by Rube Goldberg

• Start with a simple test (work your way from 

the existing examples) 

‣ Does the code do what you expect?

before looking at external libraries: 
Look at the STL / python standard library



Don’t reinvent 
the wheel

14
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•Whatever you do, you’ll end up using (at least) 

• Editor 

‣ Know* at least one “always” present editor: nano, vi(m), emacs, etc. 

‣ More modern solutions: May have some benefits 

‣ Depending on the language / platform: IDEs are a better choice (Java, Python(?)) 

• Terminal 

‣ Learn about shortcuts (tab, ctrl+r, ctrl+e, ctrl+a … have a look) 

‣ Knowing about some basic command line-tools can come in handy

15

Tools of the Trade: Editor, Terminal and IDEs

* at least know how to save and exit :) 
for the more daring: try ed
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•The choice of editor is yours… 

• Do you want “a great operating system, lacking only a decent editor” 

• Or one with two modes: “beep constantly” and “break everything” * 

•Both are versatile and learning them is worthwhile 

•However: Alternatives exist that have a less steep learning-curve 

• Most of them have been commercial solutions (TextMate, Sublime Text) 

• Open alternatives: github’s Atom, https://atom.io/ & Microsoft’s Visual Studio Code  

‣ Integrated git diffs, active communities, many plugins… 

•Once you decided which one is best for you: 

• Spend some time learning about it’s features and keybindings 

• Many things that might require dozens of keystrokes can be done with 2 (5 in emacs ;)) 

• Learn about: Linters, extensibility — look at existing plugins

16

A few words on editors: Choose what suits you and be effective

* from http://en.wikipedia.org/wiki/Editor_war
Atom on MacOS: Don’t forget to Install Shell 

Commands (after moving to final dest)

vs

https://atom.io/
http://en.wikipedia.org/wiki/Editor_war
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•At the beginning might think: Quicker with GUI, don’t need terminal 

• After learning about some command line tools… probably not 

• What if you don’t have a GUI? 

•Searching for files / something in files: grep, find.. example: 
•$ find . -name "*.cc" -exec grep -A 3 "foo" {} + 

• Displays all matches of “foo” (+3 lines below) in all .cc files from the current work dir 

•Once you learn about some of the small wheels you  can build big machines: 

• sed, head, tail, sort… awk (a turing-complete interpreted language) 

• At the beginning: note down often used commands… 

• After a tutorial dump your history* (increase cache size for max usage) 

•Shell-scripting:  

• Anything you do with the shell can just be dumped in a script 

• Alternative: Can solve most things more conveniently with an interpreted language 
‣ Con: interpreters might not always be available
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The Terminal - Get used to it

tune your bashrc / bash-profile 
see additional material

* dump the last 100 steps: 
$ history | tail -n 100 > steps.txt 

log the terminal “responses”: 
$ script # press ctrl+d to stop



page Joschka Lingemann

•SSH — might be more versatile than you think: 

• Tunneling 

‣ Secure connections to other machines 

‣ Use with VNC to avoid man-in-the-middle vulnerability  

• Generate keys for authentication 

• Working through X-forwarding can be annoying if you have bad 

latency / shaky connection 

‣ Always use screen or similar 

‣ Alternative: mosh  (https://mosh.mit.edu/)  

• allows intermittent connectivity, roaming and more… 

•SSHFS and AFS 

• Work locally but have files live in remote host

18

Interlude: Working on the go — SSH

SSH tunnel for VNC connection: 
ssh -L 5902:<VNCServerIP>5902 
<user>@<remote> vncserver :<session> -
geometry <width>x<height> -localhost -
nolisten tcp

SSH authentication via kerberos token. In ~/.ssh/config: 
GSSAPIAuthentication yes 
GSSAPIDelegateCredentials yes 
HOST lxplus* 
    GSSAPITrustDns yes

Lots of things possible with the ssh-config: 
HOST <host> 
    USER <remote-user> 
    ProxyCommand ssh <tunnel> nc <host> 
<port>

more on (auto-)tunnelling:  
https://security.web.cern.ch/security/
recommendations/en/ssh_tunneling.shtml

https://mosh.mit.edu/
https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml
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•Make your code as short as possible while maintaining readability 

• For some solutions that means to use the right language 

• Often quicker and nicer to use interpreted languages: python, perl, ruby, tcl, lua 

• Often used as binding languages: Performance critical code in C/C++ modules instantiated 

within python (e.g. in CMS offline Software) — best of both worlds 

• Personal choice: Python has a large standard library and is very expressive!

19

The right tool for many jobs - interpreted languages



Easy to read 
Code
Easier to maintain; Easy to re-use

20
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Interlude:

> ipython 

•In [1]: import array 

•In [2]: help (array) 

21

iPython
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Interlude:

    ArrayType = class array(__builtin__.object) 
     |  array(typecode [, initializer]) -> array 
     |   
     |  Return a new array whose items are restricted by typecode, and 
     |  initialized from the optional initializer value, which must be a list, 
     |  string or iterable over elements of the appropriate type. 
     |   
     |  Arrays represent basic values and behave very much like lists, except 
     |  the type of objects stored in them is constrained. 
     |   
     |  Methods: 
     |   
     |  append() -- append a new item to the end of the array 
     |  buffer_info() -- return information giving the current memory info 
     |  byteswap() -- byteswap all the items of the array 
     |  count() -- return number of occurrences of an object 
     |  extend() -- extend array by appending multiple elements from an iterable 
     |  fromfile() -- read items from a file object 
     |  fromlist() -- append items from the list

22

iPython
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Interlude:

> ipython 

•In [1]: import array 

•In [2]: help (array) 

•In [3]: import ROOT 

•In [4]: help (ROOT.TH1D) 

23

iPython
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Interlude:

class TH1D(TH1, TArrayD) 
 |  Method resolution order: 
 |      TH1D 
 |      TH1 
 |      TNamed 
 |      TObject 
 |      TAttLine 
 |      TAttFill 
 |      TAttMarker 
 |      TArrayD 
 |      TArray 
 |      ObjectProxy 
 |      __builtin__.object 
 |   
 |  Methods defined here: 
 |   
 |  AddBinContent(self, *args) 
 |      void TH1D::AddBinContent(int bin) 
 |      void TH1D::AddBinContent(int bin, double w)

24

iPython



page Joschka Lingemann

Interlude:

> ipython 

•In [1]: import array 

•In [2]: help (array) 

•In [3]: import ROOT 

•In [4]: help (ROOT.TH1D) 

•In [4]: run myscript.py 

25

iPython
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•Generally two sides of the same coin: Internal and external documentation 

• Both are necessary to make your programs easy to use 

• They have different purpose! 

•Internal documentation: 

• Explain interfaces, i.e. function signatures 

• Make note of possible future problems (better: prevent them) 

• Sometimes might be good to document your reasoning 

• Do not “over-comment” 

•External documentation: 

• Again: Explain your interfaces (can be derived from internal, e.g. doxygen.org) 

• For large projects: The big picture 

‣ Wiki pages with use-cases and examples 

‣ Consider using UML (unified modelling language)

26

Documentation: Do it while it’s fresh

if a > b: # when a is greater than b, do...

class TheClass(object): 
    """ Documentation of this class. """ 
    def __init__(self, var): 
        self.var_ = var 
    ## @var var_ 
    # my member variable 

    ## Documentation of this function. 
    # More on what this function does. 
    ## @param arg1 an integer argument 
    ## @param arg2 a string argument 
    ## @returns a list of ... 
    def some_function(self, arg1, arg2): 
        pass 

http://doxygen.org
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•Generally two sides of the same coin: Internal and external documentation 

• Both are necessary to make your programs easy to use 

• They have different purpose! 

•Internal documentation: 

• Explain interfaces, i.e. function signatures 

• Make note of possible future problems (better: prevent them) 

• Sometimes might be good to document your reasoning 

• Do not “over-comment” 

• Clean code: You write it once and you read it many times 

•External documentation: 

• Again: Explain your interfaces (can be derived from internal, e.g. doxygen.org) 

• For large projects: The big picture 

‣ Wiki pages with use-cases and examples 

‣ Consider using UML (unified modelling language)
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Documentation: Do it while it’s fresh

if a > b: # when a is greater than b, do...

class TheClass(object): 
    """ Documentation of this class. """ 
    def __init__(self, var): 
        self.var_ = var 
    ## @var var_ 
    # my member variable 

    ## Documentation of this function. 
    # More on what this function does. 
    ## @param arg1 an integer argument 
    ## @param arg2 a string argument 
    ## @returns a list of ... 
    def some_function(self, arg1, arg2): 
        pass 

http://doxygen.org


Document 
while coding

28
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•Makefiles — makes compilation easier 

• Makefiles might look complex  

• More than one source file: Useful! 

‣ Again: Think about compiling it in 2 years 

• Write your own for a small project 

• Automatically allows parallel compilation (option -j) 

•Alternatives and improvements to makefiles: CMake and others 

• Might look like overkill; Makes things easier in the long run 

• CMake is easier to read and better documented 

• Improved portability 

• At least you should learn how to compile with it

29

Write build scripts to ease your life

“Compiling” by Randall Munroe 
xkcd.com

http://xkcd.com


page Joschka Lingemann

•While running your code: 

• printing to console: only suitable for small code base 

• Sooner or later have to use a debugger: gdb (GNU debugger) — get a stack-trace 

‣ basic commands: run, bt, info <*>, help 

• Python: pdb — import pdb; pdb.set_trace() #set a breakpoint 

•General hint for debugging 

• Most segmentation violations due to memory management 

‣ Life-time vs. scope 

‣  Only use raw pointers when you have to!  
(I.e. when you know what you’re doing and you need the performance) 

‣ Look at smart pointers (part of C++11/14 standards, alternative: boost) 

• Even if you don’t have crashes: Memory Leaks. Try valgrind (valgrind.org)

30

Debugging with the right tools

http://valgrind.org
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•While writing your code: 

• There are static code analysis tools that can help you 

• Try out a linter for your preferred editor  
(e.g. atom: https://atom.io/packages/linter) 

‣ Highlights potentially problematic code— your code will be more 

reliable 

•Static checking at compile time: 

• Clang has a nice suite of static checks implemented  
http://clang-analyzer.llvm.org  

‣ Can also enforce coding styles 

• Takes longer than compiling; gives HTML reports with possible bugs 

• Might flag some false-positives

31

Static Code Checking

https://atom.io/packages/atom-lint
http://clang-analyzer.llvm.org
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•Different tests, different purposes: 

• Unit test 

‣ Testing a part of an algorithm, e.g. a class 

‣ Given a defined input, will that part produce expected output? 

• Integration test 

‣ Testing a larger part of your software 

‣ For example running an example and checking output 

•Do not mix it up with verification!

33

What do we mean with tests?
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•How to come up with tests? 

• What should the algorithm do? 

‣ Check if well defined input produces result 

• How should the algorithm fail? 

‣ Check if wrong input fails in the way you want it to 

•You’ll probably miss corner cases: 

• Once you discover them, implement a test! 

‣ Only let an error hit you once 

• Have beta-testers / users help you - use bug reports 

•Look at existing solutions for integrating tests 

• Python: doctest and unittest packages 

• C++: ctest integrated with cmake

34

Writing good tests is hard

Tests needed to 
find bugs

Tests needed 
for coverage
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Interlude:

> python testfib.py 

35

doctest

def fib(n): 
    """ Returns the fibonacci series at n 
    >>> [fib(n) for n in range(6)] 
    [0, 1, 1, 2, 3, 5] 
    >>> fib(-1) 
    Traceback (most recent call last): 
      ... 
    ValueError: n should be >= 0 
    """ 
    if n < 0:   raise ValueError("n should be >= 0") 
    if n == 0:  return 0 
    a, b = 1, 1 
    for i in range(n-1): 
        a, b = b, a+b 
    return a 

import doctest 
doctest.testmod()
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Interlude:

> python testfib.py 
>   

36

doctest

def fib(n): 
    """ Returns the fibonacci series at n 
    >>> [fib(n) for n in range(6)] 
    [0, 1, 1, 2, 3, 5] 
    >>> fib(-1) 
    Traceback (most recent call last): 
      ... 
    ValueError: n should be >= 0 
    """ 
    if n < 0:   raise ValueError("n should be >= 0") 
    if n == 0:  return 0 
    a, b = 1, 1 
    for i in range(n-1): 
        a, b = b, a+b 
    return a 

import doctest 
doctest.testmod()
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Interlude:

> python testfib.py -v 

37

doctest

def fib(n): 
    """ Returns the fibonacci series at n 
    >>> [fib(n) for n in range(6)] 
    [0, 1, 1, 2, 3, 5] 
    >>> fib(-1) 
    Traceback (most recent call last): 
      ... 
    ValueError: n should be >= 0 
    """ 
    if n < 0:   raise ValueError("n should be >= 0") 
    if n == 0:  return 0 
    a, b = 1, 1 
    for i in range(n-1): 
        a, b = b, a+b 
    return a 

import doctest 
doctest.testmod()
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Interlude:

> python testfib.py -v 
> Trying: 

>     [fib(n) for n in range(6)] 

> Expecting: 
>     [0, 1, 1, 2, 3, 5] 
> ok 

> Trying: 
>     fib(-1) 
> Expecting: 

>     Traceback (most recent call last): 

>       ... 
>     ValueError: n should be >= 0 

> ok 

38

doctest

def fib(n): 
    """ Returns the fibonacci series at n 
    >>> [fib(n) for n in range(6)] 
    [0, 1, 1, 2, 3, 5] 
    >>> fib(-1) 
    Traceback (most recent call last): 
      ... 
    ValueError: n should be >= 0 
    """ 
    if n < 0:   raise ValueError("n should be >= 0") 
    if n == 0:  return 0 
    a, b = 1, 1 
    for i in range(n-1): 
        a, b = b, a+b 
    return a 

import doctest 
doctest.testmod()



Test your 
software
and not only in production!
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•When you release your package / library: 

• Tag the repository 

‣ Ensure everyone has the same code 

• Test in the target environment 

‣ Fresh virtual machine 

• Accompanying documentation 

‣ Produce Doxygen pages 

‣ Update wikis (new version) 

‣ Make sure all examples work 

•Ideal case: All this is done every single night!

41

Releasing the Software

✓
✓
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•Working in groups on software can be hard: 

• Somebody changes something: Everything else’s code 

breaks 

• This is avoidable! 

•Whenever somebody contributes to the code base: 

• Check everything works  

‣ Can do this by hand.. Tedious 

‣ Better: Automate it. 

•Many solutions exist that periodically test things: 

• Check compilation 

• Check all defined test cases 

• Write nice summaries

42

Continuous integration

Jenkins CI - https://jenkins-ci.org 

Travis CI - https://travis-ci.org

https://jenkins-ci.org
https://travis-ci.org
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•Revision control: Important for you, important for colleagues 
•Basic: CVS and Subversion (“CVS done right”*) 

•Distributed revision control: Great for personal use (for working on the go) 

• Your local copy has everything (including history) 

•Gaining ever more popularity “git”: git-scm.com  
(“there is no way to do CVS right”*) 

• Other solutions are: Mercurial, bazaar and more 

• Easy to learn…

44

Revision control software

Pictures from: https://www.atlassian.com/git/tutorials/  
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control 
http://pcottle.github.io/learnGitBranching/* paraphrasing Linus Torvalds 

Repo-To-Repo Collaboration

Git repo

Git repo Git repo

Central-To-Working-Copy Collaboration

SVN repo

Working Copy Working Copy

http://git-scm.com
https://www.atlassian.com/git/tutorials/
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/
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Interlude:

> git init 

•Initialized empty Git repository in /TestDirectory/.git/ 

45

git basics
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Interlude:

> git init 

•Initialized empty Git repository in /TestDirectory/.git/ 
> vim README.md 

•skipping this part. 

46

git basics
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Interlude:

> git init 

•Initialized empty Git repository in /TestDirectory/.git/ 
> vim README.md 

•skipping this part. 
> git add README.md 

47

git basics
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Interlude:

> git init 

•Initialized empty Git repository in /TestDirectory/.git/ 
> vim README.md 

•skipping this part. 
> git add README.md 
> git commit -m “Initial commit of readme.” 

48

git basics

Random github commit messages:  
http://whatthecommit.com/ 

http://whatthecommit.com/
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•Easy to host & share your projects: 

• Setting up a shared repo can be done via any cloud service, e.g. dropbox 

• many open-source hosting sites, biggest: github.com 

• Not open to public but CERN users: GitLab.cern.ch 

‣ Both include fairly usable bug-tracking 

• The beauty of pull-requests: 

‣ do builds on pull-requests  

‣ review contributed code on pull-requests 

•Git is widely used — de-facto community standard 

• Exception: Python uses Mercurial 

•  
•The more you learn the more you’ll like it!

49

The git ecosystem

+

http://github.com


General Tips & Pointers
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•Udacity — courses from industry (Google, Intel, Autodesk) 

• https://www.udacity.com/courses#!/all  

‣ course material is free (videos + exercises), tutoring for monthly fees 

• Growing catalogue beginner to advanced — mostly web-centric 

‣ JavaScript + HTML5 + AJAX courses etc 

‣ But also: Intro to git, data analysis with R, parallel programming … 

•Coursera — courses by universities (Caltech, Johns Hopkins, Stanford and more) 

• https://www.coursera.org/courses  

• Large variety of courses 

‣ Not only technology / programming 

‣ Also physics, biology, economics… and more 

‣ Also in different languages 

•University Homepages — have a gander… many courses available through YouTube etc. 

• i.e.: https://www.youtube.com/watch?v=Ps8jOj7diA0&feature=PlayList&p=9D558D49CA734A02&index=0  

•http://ureddit.com/ — University of Reddit

51

Learning about software development

https://www.udacity.com/courses#!/all
https://www.coursera.org/courses
https://www.youtube.com/watch?v=Ps8jOj7diA0&feature=PlayList&p=9D558D49CA734A02&index=0
http://ureddit.com/
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•Before you write trigger / DAQ software, you should know the ins and outs: 

• What is: compiler, interpreter, linker, terminal, object, class, pointer, reference 

• If these concepts are not clear: Excellent material on the web (previous slide) 

•Before (and while) implementing: Think 

• Smart solutions can take significant amount of time… put it on the back-burner if you have 

other things to work on 

•Read! Ask! Write! The internet is full of information… Blogs, tutorials, StackOverflow, also 

Wikipedia can be very useful to get a grasp of new concepts

52

Closing Advice
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•These slides was full of starting points: You have to follow up to get something out of it. 

• Most of it are tools to make your life easier 

‣ Bonus: If you know them you’ll have an easier time to follow nerd-talk 

• Nothing is free 

‣ You’ll have to invest some effort to learn 

‣ If you do that this week: We’ll be here to help! 

•Homework: 

• Install git, start a repository. Try branching on the web 

• Run screen, kill the connection, reconnect and see if you can continue where you left off 

• Tune your .bashrc / .bash_profile to get a more useful prompt 

• Try out vim / emacs / atom and learn what suits you best — download a shortcut summary… Learn how to block-select, indent 

multiple lines, rename occurrences of text

53

Conclusion



Learn by 
writing code
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Random Things

6 Stages of Debugging: 
1.That can’t happen. 
2.That doesn’t happen on my machine. 
3.That shouldn’t happen. 
4.Why does that happen? 
5.Oh, I see. 
6.How did that ever work? 
— http://plasmasturm.org/log/6debug/ 

“Debugging is like being the 
detective in a crime novel where 
you are also the murderer.” 

— @fortes

Guru of the Week: Regular C++ 
programming problems with 
solutions by Herb Sutter 
http://www.gotw.ca/gotw/ 

Go-language: Designed with threading in mind 
http://tour.golang.org/welcome/1 

2014 lecture has complementary stuff: 
http://indico.cern.ch/event/274473/session/21/material/0/0.pdf

About JavaScript: 
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript  
https://www.destroyallsoftware.com/talks/wat 

Want to try your programming skills?  
Google code jam (registration 08.03.16): 
https://code.google.com/codejam  
Also you can just practice  
by solving nice problems.

like the fonts in the presentation? 
https://github.com/adobe-fonts/source-code-pro 
https://github.com/adobe-fonts/source-sans-pro 

http://plasmasturm.org/log/6debug/
http://www.gotw.ca/gotw/
http://tour.golang.org/welcome/1
http://indico.cern.ch/event/274473/session/21/material/0/0.pdf
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/wat
https://code.google.com/codejam
https://github.com/adobe-fonts/source-code-pro
https://github.com/adobe-fonts/source-sans-pro
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•In HEP probably no way around ROOT / RooFit 

• Maintained at CERN, used in LHC experiments 

•GNU R — www.r-project.org  

• Used widely among statisticians (including finance and others) 

• Interpreted language + software for analysis and graphical representation 

•SciPy — http://www.scipy.org/  

• Collection of python libraries for numerical computations, graphical representation and containing additional data structures 

•Sci-kitlearn: — http://scikit-learn.org/stable/  

• Python library for machine learning
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•Data visualisation: 
•Matplotlib (part of SciPy) 

• histograms, power spectra, scatterplots and more.. extensive library for 2D/3D plotting 

•ROOT 

• Again, probably no way around it… Sometimes a little unintuitive 

•Other: 
•JaxoDraw — http://jaxodraw.sourceforge.net/  

• Feynman graphs through “axodraw” latex package 

•tex2im — http://www.nought.de/tex2im.php  

• Need formulas in your favourite WYSIWG presentation tool? 

•GraphViz — http://www.graphviz.org/ or MacOS: http://www.pixelglow.com/graphviz/  

• Diagrams / Flowcharts with auto-layout
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•SAGE — www.sagemath.org 

• Open source alternative to Matlab, Maple and Mathematica  

•GNUPlot — http://www.gnuplot.info/ 

• Quick graphing and data visualisation 

•Wolfram Alpha — http://www.wolframalpha.com/ 

• Wolfram = Makers of Mathematica.. A… ask me anything?: 
‣ http://www.wolframalpha.com/input/?i=how+much+does+a+goat+weigh 

‣ Answer: Assuming “goat” is a species specification. Result: 61 kg 
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# tune your prompt: 
if [ "$PS1" ]; then 
     PS1="[\[\033[1;29m\]\[\033[0;34m\] \u\[\033[0;34m\]@\[\033[1;34m\]\h :\[\033[0m\]: \w   \
[\033[0;36m\] \$(git branch 2>/dev/null | grep '^*' | colrm 1 2) \[\033[0m\] ] \n \[\033[0;31m\]\$\
[\033[0m\] " 
fi 

# do not put duplicate lines into history: 
export HISTCONTROL=“ignoredups” 

# default to human readable filesizes 
alias df=‘df -h’ 
alias du=‘du -h’ 

# get some color 
alias grep=‘grep --color' 

# more file listing: 
alias l=‘ls’ 
alias ll=‘ls -lt -h -G -c -r’ 

# fool proof cp - asks for each file, use fcp if you’re sure 
alias fcp='cp' 
alias cp='cp -i -v' 

# never remember those.. 
alias untgz='tar -xvzf' 
alias tgz='tar -pczf' 

#never install root: 
source /path/to/your/working/root/bin/thisroot.sh 
alias root=‘root -l’ 

# Mac OS stuff 
alias wget=‘curl -O’ 

[ user@host :: pwd   current git-branch  ]

resulting prompt


