' A SNAN A .
\ OYun alent m

m...- simal!
2 20
w@ﬂB—u—%&:e:%B present . & 2 U = comy
recursiv ® v 5T impe
H. N
L o =
Om 1 1 V/.h.. R
., 55
’
y e ()
context mnsw.ﬂun ntmVOﬂm_ ..% 1w1
.H.O_UMNB o mSnQ.?.iso: ou.cay_mu;a O &
values & _Bv_aagzcos L_yv.uuﬂm. il mﬂm Md
m:cwﬂm«mnn&n changes 3O 'S n SMO
n
vaTQO/C: 2 w a.::o:m:,p?nn :ﬁca hiap oS- t ?.Ohn
~E N r \1 > onhiscre T access _-_--.-
7,
S
e o el
= 25 21
[£
= §5°
_ S
o ;
- L=
(C
7
)
RL
O
7
>\
e
an
w
>\
(C
kS
T
S
O
g +
S s
m g
S =
50 o
O S
r —
¥ %

Opening words

Disclaimer: This is more a collection of pointers™ than a tutorial, it’s a starting point...

(Almost) no code but a bias towards C++ and Python

Acknowledgment: Slides are based on previous lectures by Erkcan Ozcan, see final slide for link

*further reading and tips in
these boxes

page 2 Joschka Lingemann

Whatis programming?

» Understand & define what you want to solve @

« Define the requirements for your software

_ : : Computer
« Formulate a possible solution

 Implement that solution <E{ ‘b

» Which language?

» Documentation

» Debugging Requirements
» Implement tests O @

« Make sure it works Deploy Design
» Verification

» Deliver the code @ @
» Collect feedback Test <i Implement

» Portability to different platforms?
And back to the start

page 3 Joschka Lingemann

Development Cycles

terative Development
Developing software efficiently:

Requirements

A T

‘ Deploy | ‘ Design |

» Avoid duplication of work

» Avoid feature bloating

» Ensure code quality

» Deliver code timely @ @
‘ Test <j Implement

Many approaches to accomplish this, examples:

» |terative and Test-Driven Development Test-Driven Development

Requirements
Most approaches have similar principles, different focus O @
« on team management (agile development) ‘ weley | ‘ e |
« On actual programming style (lean development / TDD) @ @

Implement

» broad guidelines to deliver (iterative development)

o

page 4 Joschka Lingemann

A

Deploy

S

Te

st

=S

Desi

gn

g

Implement

Requirements

Choosing the programming language

RedMonk Q114 Programming Language Rankings

http://redmonk.com/sogrady/2014/01/22/language-rankings-1-14/

%?)Jsectiv O~

e Visual Basic R
Per!
Delphi Matlab
- cala
Powershell, . askel® @
y ActionSc .ovy

; ColdFusion ASP -
3 Awk lo |

o F#

L Lua CoffeeScript
: Erlang Go
> Schenfé Prolog

< Al Arduino

% PPRTRAN Tel Emacs Lisp

z Dert OCaml

5 - XQuery Type . Ipt .

Racke Processing

g VHDL 5

o oHotor e Verilog

S Mighigtiey

Smalltalk —

E Ada Standard ML -

S poT HaXe

. - Vala

N e Coq TeX

o OpenEdge ABLRust
Boo Scilab
Xteng Xygene —
Objectjve-
D wgﬁ‘%’”e . Elixir
._Lasso SUPerngﬁ&er
oL Pure Data Locoe
DCPU-16 ASM g
e M Parrot
T G LiveScript
Dylan ~LSosu
Nimrod i |
— ommon Lisp -
im
of new projects on GitHub

page 6

The answer depends:

- Analysis?

- DAQ / Trigger?

- External conditions?
- Can you choose?

Joschka Lingemann

Do you have
to program?

Deploy

Requirements

Test

Design

g

Implement

-

Design

UML Diagrams

Unified Modelling Language can be useful to sketch a Interface 4— Implementation
design ¢
Member Related
- Probably everyone has seen structure diagrams Class

Which classes (or larger components) have which

relationship
» Behaviour diagrams PO TOMER : >
What does the user do and what should be the result? order ||
» Interaction diagrams : Prepare
How does data and control flow? : Fofd
: Serve
Forces you to be concrete! fat ||
|

Joschka Lingemann

Things to keep in mind when designing

Maintainability
. |siteasytoadaptto changed environment?

» Canyou cope with (slightly) changed requirements?

Scalability
» Large data volumes
Think about data-flow and data layout

Try to avoid complicated data structures

Re-usability

« |dentity parts of the design that could be used elsewhere

« Could these be extracted in a dedicated library?

page 10 Joschka Lingemann

A

Deploy

S

=S

Desi

gn

g

Te

st

Implement

Implementation

Avoid feature bloating

If you try to do everything at once:

« You'll probably end up doing nothing right
» Generalising a problem betore solving it: Probably not a good idea
Only do it when you have a use case

 Write dedicated tools / libraries

Define features by writing a test that needs to be passed

Do notimplement more than you need to pass that test.

Be pragmatic
Only do the abstract cases when it is likely that they will be used
Try to make everything as concise as possible (maintain readability)
Keep it simple!

page 12 Joschka Lingemann

Check for existing solutions

Self-Operating Napkin

Do not reinvent the wheel
| o=
» Many problems have already been solved Y @R g
! ECE P
! g2 f) H

« (Sometimes necessary — avoid dependencies)
™

< ‘2
- 7 l’
2
\ f
) d -l
(R g \
J:/J' ‘ | V4)
- ‘\' 4 - ¥
e \U (%= |
T

“Prof. Lucifer Butts and his Self-Operating Napkin”,

-~
»

» Do not reject a library because of too many features

« When using external libraries, look out for:

»Active community? Well maintained?

» Tested? by Rube Goldberg
» Look for: Last commit a few days ago, most over a year old
Getting to know new frameworks: » Start with a simple test (work your way from
» Before asking for advice: try the simple tools the existing examples)
» Read the docs » Does the code do what you expect?

« Investing time in the beginning will pay oft

» Are there wikis? Has it been asked on StackOverflow?

» python packages: try the ipython “help”

before looking at external libraries:
Look at the STL / python standard library

page 13 Joschka Lingemann

Don’t reinvent
the wheel

Tools of the Trade: Editor, Terminal and IDE

Whatever you do, you’ll end up using (at least)
. Editor
» Know™ at least one “always” present editor: nano, vi(m), emacs, etc.
» More modern solutions: May have some benetfits

» Depending on the language / plattorm: IDEs are a better choice (Java, Python(?))

« Terminal
» Learn about shortcuts (tab, ctrl+r, ctrl+e, ctrl+a ... have a look)

» Knowing about some basic command line-tools can come in handy

* at least know how to save and exit ;)
for the more daring: try ed

page 15 Joschka Lingemann

A tew words on editors: Choose what suits you and be effective

The choice of editor is yours...

» Do you want “a great operating system, lacking only a decent editor” Ez/l

» Orone with two modes: “beep constantly” and “break everything” *

Both are versatile and learning them is worthwhile

However: Alternatives exist that have a less steep learning-curve
« Most of them have been commercial solutions (TextMate, Sublime Text)

» Open alternatives: github’s Atom, https://atom.io/ & Microsoft’s Visual Studio Code
Integrated git diffs, active communities, many plugins. . .

Once you decided which one is best for you:

» Spend some time learning about it’s features and keybindings

« Many things that might require dozens of keystrokes can be done with 2 (5 in emacs;))

» Learn about: Linters, extensibility — look at existing plugins

Atom on MacOS: Don’t forget to Install Shell

* from http://en.wikipedia.org/wiki/Editor_war

Commands (after moving to final dest)

Joschka Lingemann

https://atom.io/
http://en.wikipedia.org/wiki/Editor_war

The Terminal - Get used to it

At the beginning might think: Quicker with GUI, don’t need terminal
o After learning about some command line tools. .. probably not
« Whatifyou don’thave a GUI?

Searching for files / something in files: grep, find.. example:
find . -name "*.cc" -exec grep -A 3 "foo" {} +

« Displays all matches of “foo” (+3 lines below) in all .cc files from the current work dir

Once you learn about some of the small wheels you can build big machines:
.+ sed, head, tail, sort... awk (a turing-complete interpreted language)
» At the beginning: note down often used commands. ..

« After a tutorial dump your history” (increase cache size for max usage)

* dump the last 100 steps:
$ history | tail -n 100 > steps.txt

Shell—scripting: log the terminal “responses”:

$ script # press ctrl+d to stop

. Anything you do with the shell can just be dumped in a script

« Alternative: Can solve most things more conveniently with an interpreted language e your bashre / bash-profile

Con: interpreters might not always be available see additional material

page 17 Joschka Lingemann

Interlude: Working on the go — SSH

. . . SSHt | for VNC tion:
SSH — might be more versatile than you think: b -| 5902 <UNCServerTP>5902

<user>@<remote> vncserver :<session> -
geometry <width>x<height> -localhost -
nolisten tcp

 Tunneling

Secure connections to other machines

Use with VNC to avoid man-in-the-middle vulnerability

SSH authentication via kerberos token. In ~/.ssh/config:

 Generate keys for authentication GSSAPIAuthentication yes
GSSAPIDelegateCredentials yes
» Working through X-forwarding can be annoying it you have bad HOST Lxplus?

GSSAPITrustDns yes

late g Cy / S h d ky connection Lots of things possible with the ssh-config:

HOST <host>
USER <remote-user>
ProxyCommand ssh <tunnel> nc <host>

Always use screen or similar

Alternative: mosh (https://mosh.mit.edu/) <port>
» allows intermittent connectivity, roaming and more. .. more on (auto-)tunnelling:
https://security.web.cern.ch/security/
SSH FS and AFS recommendations/en/ssh_tunneling.shtml

« Work locally but have tiles live in remote host

Joschka Lingemann

https://mosh.mit.edu/
https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml

The right tool for many jobs - interpreted languages

Make your code as short as possible while maintaining readability
 Forsome solutions that means to use the right language

» Often quicker and nicer to use interpreted languages: python, perl, ruby, tcl, lua

» Often used as binding languages: Performance critical code in C/C++ modules instantiated
within python (e.g. in CMS offline Software) — best of both worlds

» Personal choice: Python has a large standard library and is very expressive!

argparse

parser - argparse.ArgumentParser(description-'Get the number of days in a month.')
parser.add_argument('months', metavar='month', type=str, nargs='+',

help='Months in question')
args - parser.parse_args()

months = { "january": 31, "“february": 28, "march": 31,
"april": 30, "may": 31, "june": 30,
"July": 31, "august": 31, "september": 30,
"october": 31, "november": 30, "december": 31 }

usermonth args.months:
usermonth months:

("{month} has {n} days.".format(month-usermonth, n-months[usermonth]))

("sorry month '{month}' not known.".format(month-usermonth))

page 19 Joschka Lingemann

Fasy to read
Code

Interlude: 1Python

Joschka Lingemann

Interlude: 1Python

ArrayType = class array(__builtin__.object)

page 22

array(typecode [, initializer]) -> array

Return a new array whose i1tems are restricted by typecode, and
initialized from the optional initializer value, which must be a list,
string or iterable over elements of the appropriate type.

Arrays represent basic values and behave very much like lists, except
the type of objects stored 1n them is constrained.

Methods:

append() -- append a new item to the end of the array

buffer_info() -- return information giving the current memory 1info
byteswap() -- byteswap all the items of the array

count() -- return number of occurrences of an object

extend() -- extend array by appending multiple elements from an -diterable
fromfile() -- read items from a file object

fromlist() -- append items from the list

Joschka Lingemann

Interlude: 1Python

Joschka Lingemann

Interlude: 1Python

Joschka Lingemann

Interlude: 1Python

Joschka Lingemann

Documentation: Do it while it’s fresh

Generally two sides of the same coin: Internal and external documentation
class TheClass(object):

» Both are necessary to make your programs easy to use """ Documentation of this class. """
, def __init__(self, var):
 They have different purpose! self.var = var

Internal documentation:
. Explaininterfaces, i.e. function signatures
« Make note of possible future problems (better: prevent them)
« Sometimes might be good to document your reasoning

def some_function(self, argl, arg2):

« Do not “over-comment” pass

External documentation: .
» Again: Explain your interfaces (can be derived from internal, e.g. doxygen.org) e
« For large projects: The big picture
Wiki pages with use-cases and examples

Consider using UML (unified modelling language)

page 26 Joschka Lingemann

http://doxygen.org

Documentation: Do it while it’s fresh

Generally two sides of the same coin: Internal and external documentation
class TheClass(object):
» Both are necessary to make your programs easy to use " pocumentation of this class. "N

def __init__(self, var):
self.var_ = var

 They have different purpose!

Internal documentation:
» Explaininterfaces, i.e. function signatures

Make note of possible future problems (better: prevent them)

Sometimes might be good to document your reasoning

Do not “over-comment” def some_function(self, argl, arg2):

pass
» Clean code: You write it once and you read it many times
External documentation: ifoas b

« Again: Explain your intertfaces (can be derived from internal, e.g. doxygen.org)
» For large projects: The big picture
Wiki pages with use-cases and examples

Consider using UML (unified modelling language)

page 27 Joschka Lingemann

http://doxygen.org

Document
while coding

Write build scripts to ease your life

CC=clang++
Makefiles — makes compilation easier e o
OBJECTS=$ (SOURCES: .cc=.0)

« Makefiles might look complex EXE=hownanydays

all: $(SOURCES) $(EXE)

« Morethan one source file: Useful!

$(EXE): $(OBJECTS)

$(CC) $(CFLAGS) $(OBJECTS) -o bin/$@

Again: Think about compiling it in 2 years

%.0: %.ccC
$(CC) $(CFLAGS) -c -0 $@ $<

» Write your own for a small project

.PHONY: clean all
clean:

» Automatically allows parallel compilation (option -j) m ~F $(OBIECTS) bin/$ (EXE)

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

Alternatives and improvements to makefiles: CMake and others “MY CODE'S COMPILING."
 Might look like overkill; Makes things easier in the long run @?
» CMakeis easier to read and better documented 5 = (o>

 Improved portability OrH. CARRY ON.

« At leastyou should learn how to compile with it “Compiling” by Randall Munroe

xkcd.com

page 29 Joschka Lingemann

http://xkcd.com

Debugging with the right tools

While running your code:
« printing to console: only suitable for small code base
» Sooner or later have to use a debugger: gdb (GNU debugger) — get a stack-trace
basic commands: run, bt, info <>, help

» Python: pdb — import pdb; pdb.set_trace() #set a breakpoint

General hint for debugging
+ Most segmentation violations due to memory management
Lite-time vs. scope
Only use raw pointers when you have to!

(l.e. when you know what you're doing and you need the performance)

Look at smart pointers (part of C++11/14 standards, alternative: boost)

» Evenifyou don’t have crashes: Memory Leaks. Try valgrind (valgrind.org)

page 30 Joschka Lingemann

http://valgrind.org

Static Code Checking

While writing your code:

 There are static code analysis tools that can help you

» Tryouta linter for your preferred editor
(e.g. atom: https://atom.io/packages/linter)
Highlights potentially problematic code— your code will be more

reliable

Static checking at compile time:
« Clanghas a nice suite of static checks implemented

http://clang-analyzer.llvm.org

Can also enforce coding styles

» Takes longer than compiling; gives HTML reports with possible bugs

+ Might flag some ralse-positives

ONONO, errors.py

errors.py

__future__ print_function
os, sys, allthings

def main():

i 10006
k range(j):
(k)

" main__":

Undefined name 'J’, undefined name ‘', Line 6, Column 23 0 misspelled words

eSO Example.m

12 void foo(int x, int y) {

13

id obj = [[NSString alloc] init];

1 Method returns an Objective-C object with a +1 retain count {owning reference) J

switch (x) {

2 Control jumps to ‘case 1:' atllnolBJ

case 0:

[ob] release];
break;
case 1: T
/7 [ob] autorelease],;
break;

@ Mm]mhhﬂdhwmj

default:
break;

4 Object allocated on line 13 is no longer referenced after this point and has a retain count of +1 (object |eaked) J -

Joschka Lingemann

https://atom.io/packages/atom-lint
http://clang-analyzer.llvm.org

Deploy

Requirements

Test

Design

g

Implement

-

Testing

What do we mean with tests?

Different tests, different purposes:
 Unit test
Testing a part of an algorithm, e.g. a class
Given a defined input, will that part produce expected output?
« [ntegration test
Testing a larger part of your software

For example running an example and checking output

Do not mix it up with verification!

page 33 Joschka Lingemann

Writing good tests is hard

How to come up with tests?
« What should the algorithm do?

Check it well defined input produces result

» How should the algorithm fail?

Tests needed to
find bugs

Check if wrong input fails in the way you want it to

You’ll probably miss corner cases:

 Once you discover them, implement a test!
Tests needed

Only let an error hit you once for coverage

« Have beta-testers / users help you - use bug reports

Look at existing solutions for integrating tests
« Python: doctest and unittest packages

» (C++: ctestintegrated with cmake

page 34 Joschka Lingemann

Interlude: doctest

def fib(n):
""" Returns the fibonacci series at n
>>> [fib(n) for n in range(6)]
[0, 1, 1, 2, 3, 5]
>>> fib(-1)
Traceback (most recent call last):

> python testfib.py

ValueError: n should be >= 0
mnmiin
if n < O: raise ValueError("n should be >= 0")
if n == 0: return 0
a, b=1,1
for 1 1in range(n-1):
a, b = b, atb
return a

import doctest
doctest.testmod()

page 35 Joschka Lingemann

Interlude: doctest

def fib(n):
""" Returns the fibonacci series at n
>>> [fib(n) for n in range(6)]
[0, 1, 1, 2, 3, 5]
>>> fib(-1)
Traceback (most recent call last):

> python testfib.py

ValueError: n should be >= 0

>

if n < 0O raise ValueError("n should be >= 0")
if n == 0: return 0
a, b =1, 1
for i in range(n-1):
a, b =Db, atb
return a

import doctest
doctest.testmod()

page 36 Joschka Lingemann

Interlude: doctest

> python testfib.py -v

def fib(n):
""" Returns the fibonacci series at n
>>> [fib(n) for n in range(6)]
[0, 1, 1, 2, 3, 5]
>>> fib(-1)
Traceback (most recent call last):

ValueError: n should be >= 0
mnmiin
if n < O: raise ValueError("n should be >= 0")
if n == 0: return 0
a, b=1,1
for 1 1in range(n-1):
a, b = b, atb
return a

import doctest
doctest.testmod()

page 37 Joschka Lingemann

Interlude: doctest

> python testfib.py -v

> Trying: def fib(n):
> [fib(n) for n 1in range(6)] """ Returns the fibonacci series at n

: >>> [fib(n) for n in range(6)]
> Expecting: [0, 1, 1, 2, 3, 5]

>>> fib(-1)
> ©o, 1, 1, 2, 3, 5
0, 1, 1, 2, 3, 5 Traceback (most recent call last):
> ok
: ValueError: n should be >= 0

> Try-l ng: mnmiin
S fib(-1) if n < 0: raise ValueError("n should be >= 0")

: if n == 0: return 0O
> Expecting: a, b =1,1
> Traceback (most recent call last): for 1 1Ef?€ge“kl):

a, = b, a+b

> L return a
> ValueError: n should be >= 0 import doctest
> ok doctest.testmod()

page 38 Joschka Lingemann

lest your
software

A<

Deploy Design
Test j Implement

Deploying your software

Releasing the Software

When you release your package / library:

 Tagthe repository
Ensure everyone has the same code

» Testin the target environment
Fresh virtual machine

+ Accompanying documentation
Produce Doxygen pages
Update wikis (new version) D

Make sure all examples work

Ideal case: All this is done every single night!

page 4l Joschka Lingemann

Continuous integration

® Jenkins

Working in groups on software can be hard:

]] , & People ' : ' | re Jenkins core
. SO m e bo d y C h a n geS SO m eth | n g: E\/e ryt h | n g e lse S CO d e = Build History S W Name | Last Success Last Failure Last Duration LC
O, Project Relationship g jenkins 2.0 1 day 6 hr - #7 14 days - #3 57 min =
b rea kS ‘ Check File Fingerprint jenkins lts_branch 1 mo 11 days - #197 2mo 15 days - #189 41 min
0 Job Config History J -:"% jenkins_main_maven-3.1.0 2yr6 mo - #7 N/A 1 hr 11 min
N N : We Need Beer - '
g Th |S |S aVO|da ble! . g jenkins _main_trunk 5 hr 23 min - #4426 29 days - #4399 56 min E
Build Queue - g &8 jonkins pom 1yr3 mo - #264 2 days 9 hr - #335 47 sec =
No builds in th .
-— 1._4--‘ ! jenkins_rc_branch 10 mo - #517 1yr8 mo - #424 25 min S
. Bulld Executor Status = q ?}{} remoting 2yr7 mo-#4 2yr7mo-#3 6 min 19 sec
o - Lt
Whenever somebody contributes to the code base: _—
, _ T Legend [JRSSforall [RSS for failures [) RSS for just latest builds
1 infra_backend-war-size-tracker g41gg
| — E—

» Check everything works

| | Jenkins Cl - https://jenkins-ci.org
Can do this by hand.. Tedious

Better: Automate It. podio €

Current Branches Build History Pull Requests Build #5

Many solutions exist that periodically test things: X Pull Request #3 Additionof namespaces 1) #5 faied

Fixing path for python environment Elapsed time 8 sec

« Check compilation 2 daysago

#3: Addition of namespaces

« Check all defined test cases comebody authored and committed

« Write nice summaries Travis Cl - https://travis-ci.org

page 42 Joschka Lingemann

https://jenkins-ci.org
https://travis-ci.org

collaborative work

Requiremen ts

A

Test

Collaborative working

Revision control software

Central-To-Working-Copy Collaboration

Revision control: Important for you, important for colleagues
Basic: CVS and Subversion (“CVS done right”*) ZoN reod\y

o S

Distributed revision control: Great for personal use (for working on the go) S S

| | | | Working Copy Working Copy
» Your local copy has everything (including history)

Repo-To-Repo Collaboration
Gaining ever more popularity “git”: git-scm.com

(“there is no way to do CVS right”*)

- Other solutions are: Mercurial, bazaar and more A Git repo’N
« Easytoleamn...
Pictures from: https://www.atlassian.com/git/tutorials/
i . . http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
paraphrasing Linus Torvalds http://pcottle.github.io/learnGitBranchin : :
Git repo Git repo

page 44 Joschka Lingemann

http://git-scm.com
https://www.atlassian.com/git/tutorials/
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/

Interlude: git basics

Joschka Lingemann

Interlude: git basics

Joschka Lingemann

Interlude: git basics

Joschka Lingemann

Interlude: git basics

Joschka Lingemann

http://whatthecommit.com/

The git ecosystem

Easy to host & share your projects:
« Setting up a shared repo can be done via any cloud service, e.g. dropbox

+ Many open-source hosting sites, biggest: github.com

» Not open to public but CERN users: GitLab.cern.ch

Both include rairly usable bug-tracking

O git
+ The beauty of pull-requests: +

do builds on pull-requests)
review contributed code on pull-requests OGltHUb Q) GitLab

Git is widely used — de-facto community standard

« Exception: Python uses Mercurial

The more you learn the more you’ll like it!

page 49 Joschka Lingemann

http://github.com

General Tips & Pointers

L earning about software development

Udacity — courses from industry (Google, Intel, Autodesk)

« hittps://www.udacity.com/courses#!/a

course material is free (videos + exercises), tutoring for monthly fees
 Growing catalogue beginner to advanced — mostly web-centric
JavaScript + HTMLS + AJAX courses etc
But also: Intro to git, data analysis with R, parallel programming ...
Coursera — courses by universities (Caltech, Johns Hopkins, Stanford and more)

« https://www.coursera.org/courses

. Large variety of courses
Not only technology / programming
Also physics, biology, economics. .. and more
Also in different languages
University Homepages — have a gander... many courses available through YouTube etc.
o i.e. https://www.youtube.com/watch?v=Ps8]Oj7diA0&teature=Playlist&p=9D558D49CA734A02&index=0
http://ureddit.com/ — University of Reddit

page Sl Joschka Lingemann

https://www.udacity.com/courses#!/all
https://www.coursera.org/courses
https://www.youtube.com/watch?v=Ps8jOj7diA0&feature=PlayList&p=9D558D49CA734A02&index=0
http://ureddit.com/

Closing Advice

Before you write trigger / DAQ software, you should know the ins and outs:

« Whatis: compiler, interpreter, linker, terminal, object, class, pointer, reference

» If these concepts are not clear: Excellent material on the web (previous slide)

Before (and while) implementing: Think
» Smart solutions can take signiticant amount of time. .. put it on the back-burner if you have

other things to work on

Read! Ask! Write! The internet is full of information... Blogs, tutorials, StackOverflow, also

Wikipedia can be very useful to get a grasp of new concepts

page 52 Joschka Lingemann

Conclusion

These slides was full of starting points: You have to follow up to get something out of it.

« Most of it are tools to make your life easier

Bonus: If you know them you’ll have an easier time to follow nerd-talk
 Nothingis free
You’ll have to invest some effort to learn

T you do that this week: We'll be here to help!

Homework:
. Install git, start a repository. Try branching on the web

 Run screen, kill the connection, reconnect and see if you can continue where you left off

. Tuneyour .bashrc/ .bash_profile to get a more useful prompt
« Tryoutvim/emacs/atom and learn what suits you best — download a shortcut summary. .. Learn how to block-select, indent

multiple lines, rename occurrences of text

Joschka Lingemann

| earn by
writing code

Random Things

Stages of Debugging:

nat can’t happen.

nat doesn’t happen on my machine.
nat shouldn’t happen.

ny does that happen?

n, I see.

.How did that ever work?

— http://plasmasturm.org/log/6debug/

Guru of the Week: Regular C++
programming problems with
solutions by Herb Sutter
http://www.gotw.ca/gotw/

ODUANWNR O
o= 4 -

“Debugging 1s Like being the

Want to try your programming skills? detective in a crime novel where
Google code jam (registration 08.03.16): you are also the murderer.”
https://code.google.com/codejam — @fortes

Also you can just practice
by solving nice problems.

Go-language: Designed with threading in mind About JavaScript:

http://tour.golang.org/welcome/l https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/wat

like the fonts in the presentation?

https://github.com/adobe-fonts/source-code-pro
https://github.com/adobe-fonts/source-sans-pro 2014 lecture has complementary stuff:

http://indico.cern.ch/event/274473/session/21/material/0/0.pdf

page 53 Joschka Lingemann

http://plasmasturm.org/log/6debug/
http://www.gotw.ca/gotw/
http://tour.golang.org/welcome/1
http://indico.cern.ch/event/274473/session/21/material/0/0.pdf
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/wat
https://code.google.com/codejam
https://github.com/adobe-fonts/source-code-pro
https://github.com/adobe-fonts/source-sans-pro

More useful open software

In HEP probably no way around ROOT / RooFit
 Maintained at CERN, used in LHC experiments

GNU R — www.r-project.org

. Used widely among statisticians (including finance and others)

. Interpreted language + software for analysis and graphical representation

SciPy — http://www.scipy.org/

« Collection of python libraries for numerical computations, graphical representation and containing additional data structures

Sci-kitlearn: — http://scikit-learn.org/stable/

» Python library for machine learning

page 57 Joschka Lingemann

http://www.r-project.org
http://www.scipy.org/
http://scikit-learn.org/stable/

Data visualisation:
Matplotlib (part of SciPy)

» histograms, power spectra, scatterplots and more.. extensive library for 2D/3D plotting

ROOT

« Again, probably no way around it... Sometimes a little unintuitive

Other:

JaxoDraw — http://jaxodraw.sourceforge.net/

« Feynman graphs through “axodraw” latex package

tex2im — http://www.nought.de/tex2im.php

 Need formulas in your favourite WYSIWG presentation tool?

GraphViz — http://www.graphviz.org/ or MacOS: http://www.pixelglow.com/graphviz/

» Diagrams / Flowcharts with auto-layout

Joschka Lingemann

http://jaxodraw.sourceforge.net/
http://www.nought.de/tex2im.php
http://www.graphviz.org/
http://www.pixelglow.com/graphviz/

SAGE — www.sagemath.org

 Open source alternative to Matlab, Maple and Mathematica

GNUPlot — http://www.gnuplot.info/

« Quick graphing and data visualisation

Wolfram Alpha — http://www.wolframalpha.com/

» Wolfram = Makers of Mathematica.. A... ask me anything?:

http://www.wolframalpha.com/input/?i=how+much+doestatgoat+weigh

Answer: Assuming “goat” is a species specification. Result: 61 kg

page 59 Joschka Lingemann

http://www.sagemath.org
http://www.gnuplot.info/
http://www.wolframalpha.com/
http://www.wolframalpha.com/input/?i=how+much+does+a+goat+weigh

[user@host :: pwd current git-branch]

[joschka@local :: ~/test

tune your prompt: I
S [Mepsiv 1: ther resulting prompt

PS1="[\[\033[1;29m\]\[\033[0;34m\] \u\[\033[0;34m\]1@\[\033[1;34m\]\h :\[\033[0m\]: \w \
[\033[0;36m\] \$(git branch 2>/dev/null | grep "A*' | colrm 1 2) \[\033[0Om\]] \n \[\033[0;31m\]\$\
[\033[Om\] "

i

do not put duplicate lines into history:
export HISTCONTROL=“ignoredups”

default to human readable filesizes
alias df=¢df -h’
alias du=‘du -h’

get some color
alias grep=‘grep --color'

more file listing:
alias 1=¢1s’
alias 1l=¢1ls -1t -h -G -c -r’

fool proof cp - asks for each file, use fcp if you’re sure
alias fcp='cp'
alias cp='cp -1 -v'

never remember those..
alias untgz="tar -xvzf'
alias tgz="tar -pczf'

#never install root:
source /path/to/your/working/root/bin/thisroot.sh

alias root=‘root -1’

Mac OS stuff
alias wget=‘curl -0’

page 60 Joschka Lingemann

