
January 25, 2016

Joschka Lingemann
CERN - EP-SFT

Programming for Today’s Physicists and Engineers

ISOTDAQ 2016 - Rehovot

page Joschka Lingemann

•Disclaimer: This is more a collection of pointers* than a tutorial, it’s a starting point…

•(Almost) no code but a bias towards C++ and Python

2

Opening words

Acknowledgment: Slides are based on previous lectures by Erkcan Ozcan, see final slide for link

*further reading and tips in
these boxes

page Joschka Lingemann

• Understand & define what you want to solve

• Define the requirements for your software

• Formulate a possible solution

• Implement that solution

‣ Which language?

‣ Documentation

‣ Debugging

‣ Implement tests

• Make sure it works

‣ Verification

• Deliver the code

‣ Collect feedback

‣ Portability to different platforms?

• And back to the start

3

What is programming?

Computer

D A

R

Requirements

Design

ImplementTest

Deploy

page Joschka Lingemann

•Developing software efficiently:

• Avoid duplication of work

• Avoid feature bloating

• Ensure code quality

• Deliver code timely

•Many approaches to accomplish this, examples:

• Iterative and Test-Driven Development

•Most approaches have similar principles, different focus

• on team management (agile development)

• on actual programming style (lean development / TDD)

• broad guidelines to deliver (iterative development)

4

Development Cycles

Iterative Development

Test-Driven Development

Requirements

Design

ImplementTest

Deploy

Requirements

Design

Implement Test

Deploy

Requirements

Requirements

Design

ImplementTest

Deploy

page Joschka Lingemann6

Choosing the programming language

The answer depends:
- Analysis?
- DAQ / Trigger?
- External conditions?

- Can you choose?

http://redmonk.com/sogrady/2014/01/22/language-rankings-1-14/

of

 ta
gs

 o
n

St
ac

k
O

ve
rf

lo
w

of new projects on GitHub

Do you have
to program?

7

Design

Requirements

Design

ImplementTest

Deploy

page Joschka Lingemann

•Unified Modelling Language can be useful to sketch a

design

• Probably everyone has seen structure diagrams

‣ Which classes (or larger components) have which

relationship

• Behaviour diagrams

‣ What does the user do and what should be the result?

• Interaction diagrams

‣ How does data and control flow?

•Forces you to be concrete!

9

UML Diagrams

ImplementationInterface

Member
Related
Class

Order

Prepare
Food

Serve

Eat

CUSTOMER STAFF

page Joschka Lingemann

•Maintainability

• Is it easy to adapt to changed environment?

• Can you cope with (slightly) changed requirements?

•Scalability

• Large data volumes

‣ Think about data-flow and data layout

‣ Try to avoid complicated data structures

•Re-usability

• Identify parts of the design that could be used elsewhere

• Could these be extracted in a dedicated library?

10

Things to keep in mind when designing

Implementation

Requirements

Design

ImplementTest

Deploy

page Joschka Lingemann

•If you try to do everything at once:

• You’ll probably end up doing nothing right

• Generalising a problem before solving it: Probably not a good idea

‣ Only do it when you have a use case

• Write dedicated tools / libraries

•Define features by writing a test that needs to be passed

• Do not implement more than you need to pass that test.

•Be pragmatic
‣ Only do the abstract cases when it is likely that they will be used

‣ Try to make everything as concise as possible (maintain readability)

‣ Keep it simple!

12

Avoid feature bloating

page Joschka Lingemann

•Do not reinvent the wheel

• Many problems have already been solved

• (Sometimes necessary — avoid dependencies)

‣ Do not reject a library because of too many features

• When using external libraries, look out for:

‣ Active community? Well maintained?
‣ Tested?

‣ Look for: Last commit a few days ago, most over a year old

•Getting to know new frameworks:

• Before asking for advice: try the simple tools

‣ Read the docs

• Investing time in the beginning will pay off

‣ Are there wikis? Has it been asked on StackOverflow?

‣ python packages: try the ipython “help”

13

Check for existing solutions

“Prof. Lucifer Butts and his Self-Operating Napkin”,
by Rube Goldberg

• Start with a simple test (work your way from

the existing examples)

‣ Does the code do what you expect?

before looking at external libraries:
Look at the STL / python standard library

Don’t reinvent
the wheel

14

page Joschka Lingemann

•Whatever you do, you’ll end up using (at least)

• Editor

‣ Know* at least one “always” present editor: nano, vi(m), emacs, etc.

‣ More modern solutions: May have some benefits

‣ Depending on the language / platform: IDEs are a better choice (Java, Python(?))

• Terminal

‣ Learn about shortcuts (tab, ctrl+r, ctrl+e, ctrl+a … have a look)

‣ Knowing about some basic command line-tools can come in handy

15

Tools of the Trade: Editor, Terminal and IDEs

* at least know how to save and exit :)
for the more daring: try ed

page Joschka Lingemann

•The choice of editor is yours…

• Do you want “a great operating system, lacking only a decent editor”

• Or one with two modes: “beep constantly” and “break everything” *

•Both are versatile and learning them is worthwhile

•However: Alternatives exist that have a less steep learning-curve

• Most of them have been commercial solutions (TextMate, Sublime Text)

• Open alternatives: github’s Atom, https://atom.io/ & Microsoft’s Visual Studio Code

‣ Integrated git diffs, active communities, many plugins…

•Once you decided which one is best for you:

• Spend some time learning about it’s features and keybindings

• Many things that might require dozens of keystrokes can be done with 2 (5 in emacs ;))

• Learn about: Linters, extensibility — look at existing plugins

16

A few words on editors: Choose what suits you and be effective

* from http://en.wikipedia.org/wiki/Editor_war
Atom on MacOS: Don’t forget to Install Shell

Commands (after moving to final dest)

vs

https://atom.io/
http://en.wikipedia.org/wiki/Editor_war

page Joschka Lingemann

•At the beginning might think: Quicker with GUI, don’t need terminal

• After learning about some command line tools… probably not

• What if you don’t have a GUI?

•Searching for files / something in files: grep, find.. example:
•$ find . -name "*.cc" -exec grep -A 3 "foo" {} +

• Displays all matches of “foo” (+3 lines below) in all .cc files from the current work dir

•Once you learn about some of the small wheels you can build big machines:

• sed, head, tail, sort… awk (a turing-complete interpreted language)

• At the beginning: note down often used commands…

• After a tutorial dump your history* (increase cache size for max usage)

•Shell-scripting:

• Anything you do with the shell can just be dumped in a script

• Alternative: Can solve most things more conveniently with an interpreted language
‣ Con: interpreters might not always be available

17

The Terminal - Get used to it

tune your bashrc / bash-profile
see additional material

* dump the last 100 steps:
$ history | tail -n 100 > steps.txt

log the terminal “responses”:
$ script # press ctrl+d to stop

page Joschka Lingemann

•SSH — might be more versatile than you think:

• Tunneling

‣ Secure connections to other machines

‣ Use with VNC to avoid man-in-the-middle vulnerability

• Generate keys for authentication

• Working through X-forwarding can be annoying if you have bad

latency / shaky connection

‣ Always use screen or similar

‣ Alternative: mosh (https://mosh.mit.edu/)

• allows intermittent connectivity, roaming and more…

•SSHFS and AFS

• Work locally but have files live in remote host

18

Interlude: Working on the go — SSH

SSH tunnel for VNC connection:
ssh -L 5902:<VNCServerIP>5902
<user>@<remote> vncserver :<session> -
geometry <width>x<height> -localhost -
nolisten tcp

SSH authentication via kerberos token. In ~/.ssh/config:
GSSAPIAuthentication yes
GSSAPIDelegateCredentials yes
HOST lxplus*
 GSSAPITrustDns yes

Lots of things possible with the ssh-config:
HOST <host>
 USER <remote-user>
 ProxyCommand ssh <tunnel> nc <host>
<port>

more on (auto-)tunnelling:
https://security.web.cern.ch/security/
recommendations/en/ssh_tunneling.shtml

https://mosh.mit.edu/
https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml

page Joschka Lingemann

•Make your code as short as possible while maintaining readability

• For some solutions that means to use the right language

• Often quicker and nicer to use interpreted languages: python, perl, ruby, tcl, lua

• Often used as binding languages: Performance critical code in C/C++ modules instantiated

within python (e.g. in CMS offline Software) — best of both worlds

• Personal choice: Python has a large standard library and is very expressive!

19

The right tool for many jobs - interpreted languages

Easy to read
Code
Easier to maintain; Easy to re-use

20

page Joschka Lingemann

Interlude:

> ipython

•In [1]: import array

•In [2]: help (array)

21

iPython

page Joschka Lingemann

Interlude:

 ArrayType = class array(__builtin__.object)
 | array(typecode [, initializer]) -> array
 |
 | Return a new array whose items are restricted by typecode, and
 | initialized from the optional initializer value, which must be a list,
 | string or iterable over elements of the appropriate type.
 |
 | Arrays represent basic values and behave very much like lists, except
 | the type of objects stored in them is constrained.
 |
 | Methods:
 |
 | append() -- append a new item to the end of the array
 | buffer_info() -- return information giving the current memory info
 | byteswap() -- byteswap all the items of the array
 | count() -- return number of occurrences of an object
 | extend() -- extend array by appending multiple elements from an iterable
 | fromfile() -- read items from a file object
 | fromlist() -- append items from the list

22

iPython

page Joschka Lingemann

Interlude:

> ipython

•In [1]: import array

•In [2]: help (array)

•In [3]: import ROOT

•In [4]: help (ROOT.TH1D)

23

iPython

page Joschka Lingemann

Interlude:

class TH1D(TH1, TArrayD)
 | Method resolution order:
 | TH1D
 | TH1
 | TNamed
 | TObject
 | TAttLine
 | TAttFill
 | TAttMarker
 | TArrayD
 | TArray
 | ObjectProxy
 | __builtin__.object
 |
 | Methods defined here:
 |
 | AddBinContent(self, *args)
 | void TH1D::AddBinContent(int bin)
 | void TH1D::AddBinContent(int bin, double w)

24

iPython

page Joschka Lingemann

Interlude:

> ipython

•In [1]: import array

•In [2]: help (array)

•In [3]: import ROOT

•In [4]: help (ROOT.TH1D)

•In [4]: run myscript.py

25

iPython

page Joschka Lingemann

•Generally two sides of the same coin: Internal and external documentation

• Both are necessary to make your programs easy to use

• They have different purpose!

•Internal documentation:

• Explain interfaces, i.e. function signatures

• Make note of possible future problems (better: prevent them)

• Sometimes might be good to document your reasoning

• Do not “over-comment”

•External documentation:

• Again: Explain your interfaces (can be derived from internal, e.g. doxygen.org)

• For large projects: The big picture

‣ Wiki pages with use-cases and examples

‣ Consider using UML (unified modelling language)

26

Documentation: Do it while it’s fresh

if a > b: # when a is greater than b, do...

class TheClass(object):
 """ Documentation of this class. """
 def __init__(self, var):
 self.var_ = var
 ## @var var_
 # my member variable

 ## Documentation of this function.
 # More on what this function does.
 ## @param arg1 an integer argument
 ## @param arg2 a string argument
 ## @returns a list of ...
 def some_function(self, arg1, arg2):
 pass

http://doxygen.org

page Joschka Lingemann

•Generally two sides of the same coin: Internal and external documentation

• Both are necessary to make your programs easy to use

• They have different purpose!

•Internal documentation:

• Explain interfaces, i.e. function signatures

• Make note of possible future problems (better: prevent them)

• Sometimes might be good to document your reasoning

• Do not “over-comment”

• Clean code: You write it once and you read it many times

•External documentation:

• Again: Explain your interfaces (can be derived from internal, e.g. doxygen.org)

• For large projects: The big picture

‣ Wiki pages with use-cases and examples

‣ Consider using UML (unified modelling language)

27

Documentation: Do it while it’s fresh

if a > b: # when a is greater than b, do...

class TheClass(object):
 """ Documentation of this class. """
 def __init__(self, var):
 self.var_ = var
 ## @var var_
 # my member variable

 ## Documentation of this function.
 # More on what this function does.
 ## @param arg1 an integer argument
 ## @param arg2 a string argument
 ## @returns a list of ...
 def some_function(self, arg1, arg2):
 pass

http://doxygen.org

Document
while coding

28

page Joschka Lingemann

•Makefiles — makes compilation easier

• Makefiles might look complex

• More than one source file: Useful!

‣ Again: Think about compiling it in 2 years

• Write your own for a small project

• Automatically allows parallel compilation (option -j)

•Alternatives and improvements to makefiles: CMake and others

• Might look like overkill; Makes things easier in the long run

• CMake is easier to read and better documented

• Improved portability

• At least you should learn how to compile with it

29

Write build scripts to ease your life

“Compiling” by Randall Munroe
xkcd.com

http://xkcd.com

page Joschka Lingemann

•While running your code:

• printing to console: only suitable for small code base

• Sooner or later have to use a debugger: gdb (GNU debugger) — get a stack-trace

‣ basic commands: run, bt, info <*>, help

• Python: pdb — import pdb; pdb.set_trace() #set a breakpoint

•General hint for debugging

• Most segmentation violations due to memory management

‣ Life-time vs. scope

‣ Only use raw pointers when you have to!  
(I.e. when you know what you’re doing and you need the performance)

‣ Look at smart pointers (part of C++11/14 standards, alternative: boost)

• Even if you don’t have crashes: Memory Leaks. Try valgrind (valgrind.org)

30

Debugging with the right tools

http://valgrind.org

page Joschka Lingemann

•While writing your code:

• There are static code analysis tools that can help you

• Try out a linter for your preferred editor  
(e.g. atom: https://atom.io/packages/linter)

‣ Highlights potentially problematic code— your code will be more

reliable

•Static checking at compile time:

• Clang has a nice suite of static checks implemented  
http://clang-analyzer.llvm.org

‣ Can also enforce coding styles

• Takes longer than compiling; gives HTML reports with possible bugs

• Might flag some false-positives

31

Static Code Checking

https://atom.io/packages/atom-lint
http://clang-analyzer.llvm.org

Testing

Requirements

Design

ImplementTest

Deploy

page Joschka Lingemann

•Different tests, different purposes:

• Unit test

‣ Testing a part of an algorithm, e.g. a class

‣ Given a defined input, will that part produce expected output?

• Integration test

‣ Testing a larger part of your software

‣ For example running an example and checking output

•Do not mix it up with verification!

33

What do we mean with tests?

page Joschka Lingemann

•How to come up with tests?

• What should the algorithm do?

‣ Check if well defined input produces result

• How should the algorithm fail?

‣ Check if wrong input fails in the way you want it to

•You’ll probably miss corner cases:

• Once you discover them, implement a test!

‣ Only let an error hit you once

• Have beta-testers / users help you - use bug reports

•Look at existing solutions for integrating tests

• Python: doctest and unittest packages

• C++: ctest integrated with cmake

34

Writing good tests is hard

Tests needed to
find bugs

Tests needed
for coverage

page Joschka Lingemann

Interlude:

> python testfib.py

35

doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

page Joschka Lingemann

Interlude:

> python testfib.py
>

36

doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

page Joschka Lingemann

Interlude:

> python testfib.py -v

37

doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

page Joschka Lingemann

Interlude:

> python testfib.py -v
> Trying:

> [fib(n) for n in range(6)]

> Expecting:
> [0, 1, 1, 2, 3, 5]
> ok

> Trying:
> fib(-1)
> Expecting:

> Traceback (most recent call last):

> ...
> ValueError: n should be >= 0

> ok

38

doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

Test your
software
and not only in production!

39

Deploying your software

Requirements

Design

ImplementTest

Deploy

page Joschka Lingemann

•When you release your package / library:

• Tag the repository

‣ Ensure everyone has the same code

• Test in the target environment

‣ Fresh virtual machine

• Accompanying documentation

‣ Produce Doxygen pages

‣ Update wikis (new version)

‣ Make sure all examples work

•Ideal case: All this is done every single night!

41

Releasing the Software

✓
✓

page Joschka Lingemann

•Working in groups on software can be hard:

• Somebody changes something: Everything else’s code

breaks

• This is avoidable!

•Whenever somebody contributes to the code base:

• Check everything works

‣ Can do this by hand.. Tedious

‣ Better: Automate it.

•Many solutions exist that periodically test things:

• Check compilation

• Check all defined test cases

• Write nice summaries

42

Continuous integration

Jenkins CI - https://jenkins-ci.org

Travis CI - https://travis-ci.org

https://jenkins-ci.org
https://travis-ci.org

Collaborative working

Requirements

Design

ImplementTest

Deploy

collaborative work

page Joschka Lingemann

•Revision control: Important for you, important for colleagues
•Basic: CVS and Subversion (“CVS done right”*)

•Distributed revision control: Great for personal use (for working on the go)

• Your local copy has everything (including history)

•Gaining ever more popularity “git”: git-scm.com  
(“there is no way to do CVS right”*)

• Other solutions are: Mercurial, bazaar and more

• Easy to learn…

44

Revision control software

Pictures from: https://www.atlassian.com/git/tutorials/
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/* paraphrasing Linus Torvalds

Repo-To-Repo Collaboration

Git repo

Git repo Git repo

Central-To-Working-Copy Collaboration

SVN repo

Working Copy Working Copy

http://git-scm.com
https://www.atlassian.com/git/tutorials/
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/

page Joschka Lingemann

Interlude:

> git init

•Initialized empty Git repository in /TestDirectory/.git/

45

git basics

page Joschka Lingemann

Interlude:

> git init

•Initialized empty Git repository in /TestDirectory/.git/
> vim README.md

•skipping this part.

46

git basics

page Joschka Lingemann

Interlude:

> git init

•Initialized empty Git repository in /TestDirectory/.git/
> vim README.md

•skipping this part.
> git add README.md

47

git basics

page Joschka Lingemann

Interlude:

> git init

•Initialized empty Git repository in /TestDirectory/.git/
> vim README.md

•skipping this part.
> git add README.md
> git commit -m “Initial commit of readme.”

48

git basics

Random github commit messages:
http://whatthecommit.com/

http://whatthecommit.com/

page Joschka Lingemann

•Easy to host & share your projects:

• Setting up a shared repo can be done via any cloud service, e.g. dropbox

• many open-source hosting sites, biggest: github.com

• Not open to public but CERN users: GitLab.cern.ch

‣ Both include fairly usable bug-tracking

• The beauty of pull-requests:

‣ do builds on pull-requests

‣ review contributed code on pull-requests

•Git is widely used — de-facto community standard

• Exception: Python uses Mercurial

•
•The more you learn the more you’ll like it!

49

The git ecosystem

+

http://github.com

General Tips & Pointers

page Joschka Lingemann

•Udacity — courses from industry (Google, Intel, Autodesk)

• https://www.udacity.com/courses#!/all

‣ course material is free (videos + exercises), tutoring for monthly fees

• Growing catalogue beginner to advanced — mostly web-centric

‣ JavaScript + HTML5 + AJAX courses etc

‣ But also: Intro to git, data analysis with R, parallel programming …

•Coursera — courses by universities (Caltech, Johns Hopkins, Stanford and more)

• https://www.coursera.org/courses

• Large variety of courses

‣ Not only technology / programming

‣ Also physics, biology, economics… and more

‣ Also in different languages

•University Homepages — have a gander… many courses available through YouTube etc.

• i.e.: https://www.youtube.com/watch?v=Ps8jOj7diA0&feature=PlayList&p=9D558D49CA734A02&index=0

•http://ureddit.com/ — University of Reddit

51

Learning about software development

https://www.udacity.com/courses#!/all
https://www.coursera.org/courses
https://www.youtube.com/watch?v=Ps8jOj7diA0&feature=PlayList&p=9D558D49CA734A02&index=0
http://ureddit.com/

page Joschka Lingemann

•Before you write trigger / DAQ software, you should know the ins and outs:

• What is: compiler, interpreter, linker, terminal, object, class, pointer, reference

• If these concepts are not clear: Excellent material on the web (previous slide)

•Before (and while) implementing: Think

• Smart solutions can take significant amount of time… put it on the back-burner if you have

other things to work on

•Read! Ask! Write! The internet is full of information… Blogs, tutorials, StackOverflow, also

Wikipedia can be very useful to get a grasp of new concepts

52

Closing Advice

page Joschka Lingemann

•These slides was full of starting points: You have to follow up to get something out of it.

• Most of it are tools to make your life easier

‣ Bonus: If you know them you’ll have an easier time to follow nerd-talk

• Nothing is free

‣ You’ll have to invest some effort to learn

‣ If you do that this week: We’ll be here to help!

•Homework:

• Install git, start a repository. Try branching on the web

• Run screen, kill the connection, reconnect and see if you can continue where you left off

• Tune your .bashrc / .bash_profile to get a more useful prompt

• Try out vim / emacs / atom and learn what suits you best — download a shortcut summary… Learn how to block-select, indent

multiple lines, rename occurrences of text

53

Conclusion

Learn by
writing code

54

page Joschka Lingemann55

Random Things

6 Stages of Debugging:
1.That can’t happen.
2.That doesn’t happen on my machine.
3.That shouldn’t happen.
4.Why does that happen?
5.Oh, I see.
6.How did that ever work?
— http://plasmasturm.org/log/6debug/

“Debugging is like being the
detective in a crime novel where
you are also the murderer.”

— @fortes

Guru of the Week: Regular C++
programming problems with
solutions by Herb Sutter
http://www.gotw.ca/gotw/

Go-language: Designed with threading in mind
http://tour.golang.org/welcome/1

2014 lecture has complementary stuff:
http://indico.cern.ch/event/274473/session/21/material/0/0.pdf

About JavaScript:
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/wat

Want to try your programming skills?
Google code jam (registration 08.03.16):
https://code.google.com/codejam
Also you can just practice
by solving nice problems.

like the fonts in the presentation?
https://github.com/adobe-fonts/source-code-pro
https://github.com/adobe-fonts/source-sans-pro

http://plasmasturm.org/log/6debug/
http://www.gotw.ca/gotw/
http://tour.golang.org/welcome/1
http://indico.cern.ch/event/274473/session/21/material/0/0.pdf
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/wat
https://code.google.com/codejam
https://github.com/adobe-fonts/source-code-pro
https://github.com/adobe-fonts/source-sans-pro

More useful open software

page Joschka Lingemann

•In HEP probably no way around ROOT / RooFit

• Maintained at CERN, used in LHC experiments

•GNU R — www.r-project.org

• Used widely among statisticians (including finance and others)

• Interpreted language + software for analysis and graphical representation

•SciPy — http://www.scipy.org/

• Collection of python libraries for numerical computations, graphical representation and containing additional data structures

•Sci-kitlearn: — http://scikit-learn.org/stable/

• Python library for machine learning

57

http://www.r-project.org
http://www.scipy.org/
http://scikit-learn.org/stable/

page Joschka Lingemann

•Data visualisation:
•Matplotlib (part of SciPy)

• histograms, power spectra, scatterplots and more.. extensive library for 2D/3D plotting

•ROOT

• Again, probably no way around it… Sometimes a little unintuitive

•Other:
•JaxoDraw — http://jaxodraw.sourceforge.net/

• Feynman graphs through “axodraw” latex package

•tex2im — http://www.nought.de/tex2im.php

• Need formulas in your favourite WYSIWG presentation tool?

•GraphViz — http://www.graphviz.org/ or MacOS: http://www.pixelglow.com/graphviz/

• Diagrams / Flowcharts with auto-layout

58

http://jaxodraw.sourceforge.net/
http://www.nought.de/tex2im.php
http://www.graphviz.org/
http://www.pixelglow.com/graphviz/

page Joschka Lingemann

•SAGE — www.sagemath.org

• Open source alternative to Matlab, Maple and Mathematica

•GNUPlot — http://www.gnuplot.info/

• Quick graphing and data visualisation

•Wolfram Alpha — http://www.wolframalpha.com/

• Wolfram = Makers of Mathematica.. A… ask me anything?:
‣ http://www.wolframalpha.com/input/?i=how+much+does+a+goat+weigh

‣ Answer: Assuming “goat” is a species specification. Result: 61 kg

59

http://www.sagemath.org
http://www.gnuplot.info/
http://www.wolframalpha.com/
http://www.wolframalpha.com/input/?i=how+much+does+a+goat+weigh

page Joschka Lingemann60

tune your prompt:
if ["$PS1"]; then
 PS1="[\[\033[1;29m\]\[\033[0;34m\] \u\[\033[0;34m\]@\[\033[1;34m\]\h :\[\033[0m\]: \w \
[\033[0;36m\] \$(git branch 2>/dev/null | grep '^*' | colrm 1 2) \[\033[0m\]] \n \[\033[0;31m\]\$\
[\033[0m\] "
fi

do not put duplicate lines into history:
export HISTCONTROL=“ignoredups”

default to human readable filesizes
alias df=‘df -h’
alias du=‘du -h’

get some color
alias grep=‘grep --color'

more file listing:
alias l=‘ls’
alias ll=‘ls -lt -h -G -c -r’

fool proof cp - asks for each file, use fcp if you’re sure
alias fcp='cp'
alias cp='cp -i -v'

never remember those..
alias untgz='tar -xvzf'
alias tgz='tar -pczf'

#never install root:
source /path/to/your/working/root/bin/thisroot.sh
alias root=‘root -l’

Mac OS stuff
alias wget=‘curl -O’

[user@host :: pwd current git-branch]

resulting prompt

