
Threaded Programming
V. Erkcan Özcan
Boğaziçi University

Based on past ISOTDAQ lectures by Giuseppe Avolio, Gökhan Ünel, Giovanna L. Miotto…

ISOTDAQ’16, January 28, 2016

ISOTDAQ’16, Rehovot - V. E. Özcan

What is Concurrency?

Compulsory wikipedia descriptions:

In computer science, concurrency or
concurrence is a property of systems in
which several computations are executing
simultaneously, and potentially interacting
with each other. The computations may
be executing on multiple cores in the
same chip, preemptively time-shared
threads on the same processor, or
executed on physically separated
processors.

Concurrent computing is a form of
computing in which several computations
are executing during overlapping time
periods—concurrently—instead of
sequentially (one completing before the
next starts).

2

Task switching on a single core computer

Parallelism on
a dual-core
computer

ISOTDAQ’16, Rehovot - V. E. Özcan

A Bit of History

late 1950s: time-sharing using interrupts
and multiple CPUs discussed by Gill.

1960s: Burroughs D825, IBM System/360 -
first multiCPU systems.

1962: E. Codd, “Multiprogramming” - mutex.

1965: E. W. Dijkstra, “Solution of a Problem
in Concurrent Programming Control” -
semaphore (seinpaal).  
 
 

1995: POSIX.1c (IEEE std 1003.1c):
pthreads

pthread_create(), pthread_join(), etc.

3

https://en.wikipedia.org/wiki/POSIX_Threads
https://www.di.ens.fr/~pouzet/cours/systeme/bib/dijkstra.pdf
https://commons.wikimedia.org/wiki/File:Bundesarchiv_B_145_Bild-F038812-0014,_Wolfsburg,_VW_Autowerk.jpg
http://web.mit.edu/Saltzer/www/publications/MIT-MAC-TR-030.ocr.pdf

ISOTDAQ’16, Rehovot - V. E. Özcan

Concurrency, Why?

The old answers:

Driving slow devices, such as disks, terminals, printers, networks, etc. Your
program can still do useful work in the other threads while it is handling
such devices.

Enduser is impatient: People want to do multiple things with the computer at
the same time.

Reduce latency: You can respond to an enduser request fast and then do
the dirty work later.

Multiple clients: In a system with shared resources (file server, web server,
etc.), clients requests can run “simultaneously”.

Good coding answers:

Group related piece of code together

Identify and separate areas of functionality

4

ISOTDAQ’16, Rehovot - V. E. Özcan

Concurrency, Why?

Compulsory stackexchange answer (from 2011):

5 Yes, it is a bit cheesy, but gets the idea right.

ISOTDAQ’16, Rehovot - V. E. Özcan

Concurrency is the Future

Single-thread
performance
increasing
very slowly
(thanks to
dynamic clock
frequency
adjustments),
but don’t
expect more
for-free
faster code.

Transistor
count still
going
logarithmic;
concurrent
computing is
the way of
the future!

6

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Year

40 Years of Microprocessor Trend Data

Number of
Logical Cores

Frequency (MHz)

Single-Thread
Performance
(SpecINT x 103)

Transistors
(thousands)

Typical Power
(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

Ne
w
 p

lo
t

by
 K

. R
up

p
(2

01
5)

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

ISOTDAQ’16, Rehovot - V. E. Özcan

Already a Quarter Thousand!

Intel “Knights
Landing” Xeon Phi -
61 (more to come)
cores with 4 threads
each (4-way SMT),
ie. 244 logical cores!

7

ISOTDAQ’16, Rehovot - V. E. Özcan

Amdahl’s Law

Rather straightforward argument.

Slatency = theoretical speedup in
latency of the execution of the
whole task.

s is the speedup factor (say number
of parallel processors) for the
execution of the part of the task
that benefits from paralellisation;

p is the percentage of the execution
time of the whole task concerning
the part that benefits from the
improvement of the resources of the
system before the improvement.

8

D
aniels220 at English W

ikipedia

Example: if 95% of the program can be
parallelised, the theoretical maximum speedup
using parallel computing would be 20 times, no

matter how many processors are used.

ISOTDAQ’16, Rehovot - V. E. Özcan

Concurrency’s Flavors 1

Multiple processes
Separate applications running at the same time

Messages can be exchanged using the inter-
process mechanism provided by the Operating
System (signals, sockets, files…)

Cons

Inter-process communication is usually complicated
or slow

Overhead: duplicating resources needed by the OS
and the application itself

Pros

Easier to write correct concurrent code

Processes can be spawn on different nodes
connected over a network

9

Process 1

Thread

Process 2

Thread

Operating
System Inter-process

Quick tip: use
task spooler (ts)

http://vicerveza.homeunix.net/~viric/soft/ts/

ISOTDAQ’16, Rehovot - V. E. Özcan

Forking

A kind of multi-process concurrency is forking.

Very easy to use, but slow and heavy:

a separate address space for the child
process with an exact copy of all the
memory segments of the parent.

10

, sleep

ISOTDAQ’16, Rehovot - V. E. Özcan

Concurrency’s Flavors 2

Multiple threads
Threads are often called lightweight processes

A process may run one or several threads

A thread is the smallest unit of processing that can
be scheduled by the OS

Resources
Shared global memory address space (i.e., access to
the same variables)

But each thread has its own stack and local
variables

Threads can be executed simultaneously &
asynchronously with respect to the other ones

Lower overhead with respect to running multiple
processes

11

Process

Thread 1

Thread 2

Shared Memory

ISOTDAQ’16, Rehovot - V. E. Özcan

Risks of Threads

12

Safety
• The execution’s

order of threads
is unpredictable

• A thread may
access or modify
variables another
thread is using

• Access to shared
data must be
coordinated:
synchronization

Liveness
• Deadlock: all the

threads wait for
the same resource

• Starvation: a
thread is
perpetually denied
access to a
resource it needs
in order to make
progress

• Livelock: a thread
keeps retrying an
operation that will
always fail

Performance
One needs to take into account
the time spent for
synchronization and
scheduling.
• Save/restore register

state, cache state, etc.
• Too many threads: OS

reverts to round-robin;
time slice for a thread
that locked a resource
might expire, locking all
others.

Difficult to maintain.

ISOTDAQ’16, Rehovot - V. E. Özcan

Warning

"Although threads seem to be a small step from
sequential computation, in fact, they represent a huge
step. They discard the most essential and appealing
properties of sequential computation: understandability,
predictability, and determinism. Threads, as a model of
computation, are wildly nondeterministic, and the job of
the programmer becomes one of pruning that non-
determinism.”

The Problem with Threads, Edward A. Lee, 2006

Do it correctly the first time! Debugging this thing is an
order of magnitude worse than your sequential code.

13

ISOTDAQ’16, Rehovot - V. E. Özcan

A Very First Threaded Program

In C++11 (and onwards), it is very easy
to play with threads.

Functors can also be made into
threads easily, but they are beyond
the scope of this lecture.

We generate one thread per virtual core.

Oversubscription is also ok if you
know what you are doing.

Use std::vector to get an array of
threads and then join() them.

join() makes sure each thread is
completed before the main is done.

The program ends when all the joined
threads have finished execution.

The output is scrambled, as we would
expect from 8 threads running
concurrently.

14

of hardware units: 8
HHeHHHHeHHyeeeeyee yyyy yyI I IIII IIa a maaaamaa mmmm mmh h
ehhhhehhreeeereeerrrrerr eeee ee7 3
6184
25

ISOTDAQ’16, Rehovot - V. E. Özcan

Mutual Exclusion
If we want to unscramble the
output, we need that the
resource std::cout is accessed by
the threads one at a time.

We can use a mutex. When
the mutex is locked, the
execution waits until it gets
unlocked.

RAII: Resource Acquisition Is
Initialization

Resource (mutex) is allocated
during the creation of the
lock_guard object, while
deallocation happens during
object destruction, by the
destructor.

Extra hint: You can do even
better than this. You can put a
mutex and any other resource
(stream, network, etc.) into a
class and hide the resource
completely from direct access.15

Hey I am here 1
Hey I am here 2
Hey I am here 5
Hey I am here 4
Hey I am here 3
Hey I am here 8
Hey I am here 7
Hey I am here 6But wait, we lost all concurrency.

ISOTDAQ’16, Rehovot - V. E. Özcan

Not Just “Resource” Sharing

Don’t see the use of the mutex just as a means for different threads
reaching out to a limited physical resource (like cout) one at a time.

You don’t have to have threads doing identical jobs; you can have
multiple threads of different kinds interacting with each other.

For a list of classical (and not-so-classical) synchronisation puzzles,
see for example, The Little Book of Semaphores, by A. B. Downey.

Producer-consumer, readers-writers, dining  
philosophers, cigarette smokers, babershop,  
river crossing, unisex bathroom, sushi bar,  
child care, etc.

The syntax of the language is useful, but these  
allow you to think of new algorithms in reallife problems.

16

Dijkstra, 1965.

http://www.greenteapress.com/semaphores/downey08semaphores.pdf
https://en.wikipedia.org/wiki/Dining_philosophers_problem

ISOTDAQ’16, Rehovot - V. E. Özcan

A Word of Warning

Having mentioned the dining philosophers, do you see the real problem with it?

Here is your pseudocode for each philosopher:

1.Ponder the nature of reality until the left fork is available; when it is,
pick it up.

2.Ponder the nature of reality until the right fork is available; when it is,
pick it up.

3.When both forks are held, eat for a fixed amount of time.

4.Put the right fork down.

5.Put the left fork down.

6.Repeat from the beginning.

If you are not careful, you will end up with deadlocks, even with two
philosophers. Don’t use your mutexes arbitrarily.

See one solution at: http://rosettacode.org/wiki/Dining_philosophers

17

Lock 1st
fork Wait foreverTry to lock 2nd

fork

Lock 2nd
fork Wait foreverTry to lock 1st

fork

http://rosettacode.org/wiki/Dining_philosophers

ISOTDAQ’16, Rehovot - V. E. Özcan

Primitive Producer-Consumer

Food stack is on our shared
memory.

Hence the mutex.

Each second feed() puts in
larger and larger pieces.

What is eat() really eating?

18

I ate something. Hunger level=40
I ate something. Hunger level=39
I ate something. Hunger level=37
I ate something. Hunger level=34
I ate something. Hunger level=30
I ate something. Hunger level=25
I ate something. Hunger level=19
I ate something. Hunger level=12
I ate something. Hunger level=4
I ate something. Hunger level=-5

Lots of CPU cycles.

ISOTDAQ’16, Rehovot - V. E. Özcan

Condition Variables

We could also add some sleep
(say 50ms) to eat(): when no new
food, why not just say,
this_thread::sleep_for(ch
rono::milliseconds(50)); ?

But isn’t there a method without
any polling?

Once the food is ready we notify
(any) one thread that is waiting.

Hungry eat() is sleeping. If it
wakes up on its own, it goes back
to sleep if !stk.empty().
Otherwise it wakes up thanks to
the notification and eats.
Yummy…

19

ISOTDAQ’16, Rehovot - V. E. Özcan

Are Mutexes Always Necessary?

The same code but this time it
also performs a very important
computation: “counting up to
10k 8 times”.

Scrambling is not an issue
now. Whichever thread
gets to the resource, let it
use it.

Removed the mutex,
because “we want the
counting part to be
concurrent”. (You think
you are smart, don’t you?)

We give 1.5 seconds for the
completion of threads.

But the output is wrong and it
is changing each time we run
the code.

Why? What is wrong? Are
printing before the
threads finish their
computations? But
#completed is 8.

20

All the threads counting together = 18134
of completed threads = 8

ISOTDAQ’16, Rehovot - V. E. Özcan

Need for Atomicity
CPU is much faster than the memory. In order to overcome the memory latency, memory
caches are used.

Each core/CPU has its own cache. However if a value in one cache is updated, the
value in the other caches become invalid.

There are cache-coherence protocols to overcome these issues. But even with those,
unless you apply a memory model in your programming language, you will end up with
issues.

If we simplify this: Consider one thread reads the value of the counter, but before it
writes back the incremented value, another thread reads the old value of the counter.

21

All the threads counting together = 80000
of completed threads = 8

value->9 value=109+1->10

value->9 value=109+1->10

It is important that read-increment-write
is done atomically; nothing should be able
to break that. Use std::atomic<int>.

ISOTDAQ’16, Rehovot - V. E. Özcan

Messages from the Future

As an alternative,
we can let each
thread to perform
the difficult
computation on local
variables and
return the result.

But when will they
complete their
computations?

Who cares?
Sometime in the
future we will
know the result.

22

HHeeyy IHI HHe aeeHyaHmyyeH me yeI yhII y h e I aeIraa Imr emma
ea mah mh1h me2 e
eh r8 …
All the threads counting together = 80000

ISOTDAQ’16, Rehovot - V. E. Özcan

Closing Advice

Learn it like a pro.

Old ISOTDAQ lectures are available online.

ISOTDAQ’12, Giovanna’s lecture with Java.

ISOTDAQ’13, Gökhan’s lecture with C+11
& pthreads + signal handling.

ISOTDAQ’15, Giusppe’s lecture with extra
information on the HW side

23

1989 © DEC

There is a revised version with C#, 2005 © Microsoft.

http://www.greenteapress.com/semaphores/
https://birrell.org/andrew/papers/035-Threads.pdf
http://web.mit.edu/6.826/www/notes/HO16.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2009.04.05a.pdf

ISOTDAQ’16, Rehovot - V. E. Özcan

Conclusion
Parallel programming is fast becoming a must…

It is not easy, but:

At least it is easier than it used to be. Concurrent code is also a lot more portable
than before.

It can be quite a lot of fun.

This lecture is only the tip of the iceberg.

Two “concurrent” learning steps needed: (1) play with the code freely on your own, making
your own mistakes; (2) study at least the classical examples from a decent source.

More than any other programming experience, concurrent programming requires some
reformulating your ideas in foreign ways.

Its syntax is easy to learn, but it requires a new point of view.

Homework:

Implement a solution to the dining savages problem (or pick another problem of your liking
from the Little Book); OR:

Integrate some function, say sin²θ, using Monte Carlo integration distributed over a number
of threads. Measure the speedup. Test how well hyperthreaded cores behave.

24

