ISOTDAQ’16, January 28, 2016

WHAT IS CONCURRENCY?

Compulsory wikipedia descriptions:

In computer science, concurrency or Task switching on a single core computer

concurrence is a property of systems in
which several computations are executing
simultaneously, and potentially interacting
with each other. The computations may

be executing on multiple cores in the
same chip, preemptively time-shared

threads on the same processor, or

executed on physically separated

processors. Parallelism on

Concurrent computing is a form of a dual-core
IIIIII -

computing in which several computations
are executing during overlapping time
periods—concurrently—instead of
sequentially (one completing before the
next starts).

ST ARG I R ol N O 2

A BIT OF HISTORY

late 1950s: time-sharing using interrupts
and multiple CPUs discussed by Gill.

1960s: Burroughs D825, IBM System/360 -
first multiCPU systems.

1962: E. Codd, "Multiprogramming” - mutex.

1965: E. W. Dijkstra, "Solution of a Problem
in Concurrent Programming Control”
semaphore (seinpaal).

Dennis and Van Horn [ll] have used the words "locus of
control within an instruction sequence," to describe a
process; the alternative term "thread® (suggested by V.
Vyssotsky) is suggestive of the abstract concept embodied in
the term "process."

1995: POSIX.1c (IEEE std 1003.1c):
pthreads

pthread_create(), pthread_join(), etc.

IOTDACL R ot- N B Osean 3

r

|
¥

< L
S
RF

il
LML
. = (|

m

—

Solution of a Problem in

wn Concurrent Programming Control

E. W. DugsTrA
Technological University, Eindhoven, The Netherlands

A number of mainly independent sequential-cyclic processes
with restricted means of communication with each other can
be made in such a way that at eany moment one and only one
of them is engaged in the “critical section” of its cycle.

Introduction

(Given in this paper is a solution to a problem for which,
to the knowledge of the author, has been an open question
since at least 1962, irrespective of the solvability. The
paper consists of three parts: the problem, the solution,
and the proof. Although the setting of the problem might
seem somewhat academic at first, the author trusts that
anyone familiar with the logical problems that arise in
computer coupling will appreciate the significance of the
fact that this problem indeed can be solved.

R e —scemsERGT

https://en.wikipedia.org/wiki/POSIX_Threads
https://www.di.ens.fr/~pouzet/cours/systeme/bib/dijkstra.pdf
https://commons.wikimedia.org/wiki/File:Bundesarchiv_B_145_Bild-F038812-0014,_Wolfsburg,_VW_Autowerk.jpg
http://web.mit.edu/Saltzer/www/publications/MIT-MAC-TR-030.ocr.pdf

CONCURRENCY, WHY?

The old answers:

Driving slow devices, such as disks, terminals, printers, networks, etc. Your

program can still do useful work in the other threads while it is handling
such devices.

Enduser is impatient: People want to do multiple things with the computer at
the same time.

Reduce latency: You can respond to an enduser request fast and then do
the dirty work later.

Multiple clients: In a system with shared resources (file server, web server,
etc.), clients requests can run “simultaneously”.

Good coding answers:

Group related piece of code together

Identify and separate areas of functionality

ST ARG I R ol N O 4

CONCURRENCY, WHY?

Compulsory stackexchange answer (from 2011):

A Here's a quick and easy motivation: If you want to code for anything but the smallest, weakest
: systems, you will be writing concurrent code.

25 Want to write for the cloud? Compute instances in the cloud are small. You don't get big ones,
you get lots of small ones. Suddenly your little web app is a concurrent app. If you designed it

N4 well, you can just toss in more servers as you gain customers. Else you have to learn how while

V your instance has its load average pegged.

OK, you want to write desktop apps? Everything has a dual-or-more-core-CPU. Except the least

expensive machines. And people with the least expensive machines probably aren't going to fork

over for your expensive software, are they?

Maybe you want to do mobile development? Hey, the iPhone 4S has a dual-core CPU. The rest
won't be far behind.

Video games? Xbox 360 is a multi-CPU system, and Sony's PS3 is essentially a multi-core
system.

You just can't get away from concurrent programming unless you are working on tiny, simple
problems.

share improve this answer answered Oct 21 '11 at 3:27

f?. ObscureRobot
W 534 0306

ISOTDAQ’16, Rehovot - V. E. Ozcan 5 Yes, it is a bit Cheesy, but ge’rs the idea rlgh’r

UNJ
% D
S 7
8 @

o J
S 1863

CONCURRENCY IS THE FUTURE

40 Years of Microprocessor Trend Data

o 107 | | I I :
S 3 5 5 3 Transistors
sl ST e 53 L e P Aoh | (thousands)
z A aprd, i :
B DR e o i s AR D P T e A | Single-Thread
5 A e Performance
AL e L ae | (speciNT x 10%)
2 ; ; £1° % g ;
| s Ty b) o T Frequency (MHz)
D e e ua&.e.f '-"'.HI- ffffffffff S i i
| 3 o ‘ |
A ’.d-. v X Typical Power
102 | A 3;. ******** CERAR A8 224 2 AU NG -4 (Watts)
: : v :)
. = 2 ','vi y: AR L Number of
WiE S R W s e | Logical Cores
0 Lw N ATy Ly | Rr e,
10 -sq ———————————— R A ® R Rt R e -
i i i i
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2015 by K. Rupp

ISOTDAQ’16, Rehovot - V. E. Ozcan

Single-thread
performance
increasing
very slowly
(thanks to
dynamic clock
frequency
adjustments),
but don't
expect more
for-free
faster code.

Transistor
count still
going
logarithmic;
concurrent
computing is
the way of
the future!

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

Knights Landing =)

nde

Holistic Approach to Real Application Breakthroughs e b
Compute

* Intel® Xeon® Processor Binary-Compatible
= 3+ TFLOPS', 3X ST’ (single-thread) pet v o

= 2D Mesh Architecture
. Out-of-Order Cores

Platform Memory
#50F up 1 384 GB DDR4 (6 ch)

Intel "Knights

Landing” Xeon Phi - Procersar Fackege Omni-patt
61 (more to come) // // o ww;“.og.ﬁ;

cores with 4 threads e e e s e e o s
each (4-way SMT), S

le. 244 logical cores!

ISOTDAQ’16, Rehovot - V. E. Ozcan

AMDAHL’S LAW

Z 1
1-p+ P

S latency ('5)

Rather straightforward argument.

Siatency = Theoretical speedup in
latency of the execution of the
whole task.

s is the speedup factor (say number
of parallel processors) for the
execution of the part of the task
that benefits from paralellisation;

p is the percentage of the execution
time of the whole task concerning
the part that benefits from the
improvement of the resources of the
system before the improvement.

ISOTDAQ’16, Rehovot - V. E. Ozcan

Amdahl’s Law

20.00

/
|~
18.00 //
/ Parallel Portion
16.00 7 —50%
/ —75%
14.00 90%
/ ——95%
12.00 /
o /
=]
§1o.oo 7 —
/
(7]
8.00 / //
6.00 //
/
4.00
7
1
2.00 e e
RS S g g g &
[}

2048
4096
8192
16384
32768
65536

L o~ n

Number of Processors

BIPOdDIIM USI[SUH 38 OccsPiueq

Example: if 95% of the program can be
parallelised, the theoretical maximum speedup
using parallel computing would be 20 times, no

matter how many processors are used.

CONCURRENCY’S FLAVORS 1

Multiple processes
Separate applications running at the same time

Messages can be exchanged using the inter-

process mechanism provided by the Operating
System (signals, sockets, files...)
Cine Thread

Inter-process communication is usually complicated Operating
or slow System Inter-process

Overhead: duplicating resources needed by the OS

and the application itself Thread
Pros

Easier to write correct concurrent code

Processes can be spawn on different nodes
connected over a network

Quick tip: use

ISOTDAQ’16, Rehovot - V. E. Ozcan 9 task spooler (ts)

http://vicerveza.homeunix.net/~viric/soft/ts/

FORKING

#include <stdio.h> // printf, stderr, fprintf ,
#include <sys/types.h> // pid t } // end of child
#include <unistd.h> // _exit, fork, sleep else
#include <stdlib.h> // exit {
#include <errno.h> // errno
/* If fork() returns a positive number, we
int main(void) are in the parent process
{ * (the fork return value is the PID of the
pid t pid; newly created child process)
pid = fork(); _*/ ,
= o b e By
if (pid == -1) { for (i = 0; 1 < 10; i++)
fprintf(stderr, "can't fork, error %d\n", {
errno); printf("parent: %d\n", 1i);
exit (EXIT FAILURE); } sleep(1);
}

exit(0);

if (pid == 0) { }// end of parent

/* Child process:
* If fork() returns 0, it is the child
process. }

*/
intsigs
for (j = 0; j < 15; j++) {
printf("child: %d\n", Jj);
sleep(1l);
} a separate address space for the child
e R e s O e process with an exact copy of all the

exit() */
memory segments of the parent.

return 0;

A kind of multi-process concurrency is forking.

Very easy to use, but slow and heavy:

SO TDAG o Rt N, B O 10

/bq\u"”'@?
Ny O
S m

1863

CONCURRENCY’S FLAVORS 2

Multiple threads

Threads are often called lightweight processes
A process may run one or several threads

A thread is the smallest unit of processing that can
be scheduled by the OS

Thread 1
Resources

Shared global memory address space (i.e., access to
the same variables)

Shared Memory

But each thread has its own stack and local

: Thread 2
variables

Process

Threads can be executed simultaneously &
asynchronously with respect to the other ones

Lower overhead with respect to running multiple
processes

SO TDAG o Rt N, B O 11

RISKS OF THREADS

Safety

The executions
order of threads
is unpredictable
A thread may
access or modify
variables another
thread is using
Access to shared
data must be
coordinated:
synchronization

Liveness

Deadlock: all the
threads wait for
the same resource

Starvation: a
thread is
perpetually denied
access to a
resource it needs
in order to make
progress

Livelock: a thread
keeps retrying an
operation that will
always fail

Performance

One needs to take into account

the time spent for

synchronization and

scheduling.

e Save/restore register
state, cache state, efc.

° Too many threads: OS
reverts to round-robin;
time slice for a thread
that locked a resource
might expire, locking all
others.

Difficult to maintain.

WARNING

"Although threads seem to be a small step from
sequential computation, in fact, they represent a huge
step. They discard the most essential and appealing
properties of sequential computation: understandability,
predictability, and determinism. Threads, as a model of
computation, are wildly nondeterministic, and the job of
the programmer becomes one of pruning that non-
determinism.”

The Problem with Threads, Edward A. Lee, 2006

Do it correctly the first time! Debugging this thing is an
order of magnitude worse than your sequential code.

SO TDAG o Rt N, B O 15

#include <iostream’?
#include <thread>
#include <vector>

vold testfunction(int tid) <
std::cout << "Hey I am here " << tid << std::endl;

L

int main() <

L

/7 this gives 8 on my hyperthreaded 4-core machine
const int nhardthread = std::thread: hardware_concurrency() ;
std: :cout << "# of hardware units: " << nhardthread << std::endl;

std::vectord{std: :thread> t;
for (int 1=0; i<nhardthread; ++i) i

t.push_back(std: :thread(testfunction,i+1));

for (autok th : t) th.join();

return 0O;

of hardware units: 8
HHeHHHHeHHyeeeeyee yyyy yyl

ehhhhehhreeeereeerrrrerr eecee ee’

6184
25

ISOTDAQ’16, Rehovot - V. E. Ozcan

I

IIIT ITa
3

14

S 1863

A VERY FIRST THREADED PROGRAM

In C++11 (and onwards), it is very easy
to play with threads.

Functors can also be made into
threads easily, but they are beyond
the scope of this lecture.

We generate one thread per virtual core.

Oversubscription is also ok if you
know what you are doing.

Use std::vector to get an array of
threads and then join() them.

join() makes sure each thread is
completed before the main is done.

The program ends when all the joined
threads have finished execution.

The output is scrambled, as we would
expect from 8 threads running
concurrently.

a maaaamaa mmmm mmh h

MUTUAL EXCLUSION

ISOTDAO 6. Rehovot- V. B Ozcan 15

#include <iostream>
#include <thread>
#include <vector>
#include <mutex>
std: ::mutex mtx; // lockable object to encapsulate critical sections
vold testfunction(int tid) <
std: :lock_guard<std: :mutex> guard(mtx); // RAII
A/mtx . lock() ;
std::cout << "Hey I am here " << tid << std::endl;
A/mtx . unlock() ;
int main() {
/7 thlis gives 8 on my hyperthreaded 4-core machine
const int nhardthread = std::thread::hardware_concurrency();
std::vector{std: :thread> t;
for (int 1=0; i<nhardthread; ++1i) 1
t.push_back({std: :thread(testfunction,i+1)); >} Hey I am here
) o Hey I am here
for (auto& th : t) th.join();
Hey I am here
return 0O; Hey I am here
Hey I am here
Hey I am here
Hey I am here
But wait, we lost all concurrency. Hey I am here

O NJOoO WdOINDBR

If we want to unscramble the
output, we need that the
resource std::cout is accessed by
the threads one at a time.

We can use a mutex. When
the mutex is locked, the
execution waits until it gets
unlocked.

RAII: Resource Acquisition Is
Initialization

Resource (mutex) is allocated
during the creation of the
lock_guard object, while
deallocation happens during
object destruction, by the
destructor.

Extra hint: You can do even
better than this. You can put a
mutex and any other resource
(stream, network, etc.) into a
class and hide the resource
completely from direct access.

NOT JUST “RESOURCE” SHARING

Dont see the use of the mutex just as a means for different threads
reaching out to a limited physical resource (like cout) one at a time.

You dont have to have threads doing identical jobs; you can have
multiple threads of different kinds interacting with each other.

For a list of classical (and not-so-classical) synchronisation puzzles,
see for example, The Little Book of Semaphores, by A. B. Downey

Producer-consumer, readers-writers, dining @
philosophers, cigarette smokers, babershop, \/ /
@\

river crossing, unisex bathroom, sushi bar,
child care, etc.
The syntax of the language is useful, but these)

allow you to think of new algorithms in reallife problems.

G961 'DJ+S>|fla

SO TDAG o Rt N, B O 16

http://www.greenteapress.com/semaphores/downey08semaphores.pdf
https://en.wikipedia.org/wiki/Dining_philosophers_problem

A WORD OF WARNING

Having mentioned the dining philosophers, do you see the real problem with it?
Here is your pseudocode for each philosopher:

1.Ponder the nature of reality until the left fork is available; when it is,
pick it up.

2.Ponder the nature of reality until the right fork is available; when it is,
pick it up.

3.When both forks are held, eat for a fixed amount of time.
4.Put the right fork down.
5.Put the left fork down.

6.Repeat from the beginning.

If you are not careful, you will end up with deadlocks, even with two
philosophers. Dont use your mutexes arbitrarily.

See one solution at: http://rosettacode.org/wiki/Dining_philosophers

ROTD A ekt BiOsean 17

http://rosettacode.org/wiki/Dining_philosophers

PRIMITIVE PRODUCER-CONSUMER

#include <iostream>
#include <thread>
#include <stack>
#include <mutex>
#include <chrono>

std: imutex mtx;
std::stack<{int> stk;

using namespace std;
vold feed() {
for (int i=0; 1<10; ++i) { // growing food size

unique_lock<mutex> ulocker(mtx); // like lock_guard, but ...

stk.push(i);
ulocker.unlock(); //

this_thread: :sleep_fori{chrono: :seconds(1));

b

void eat() {
int hunger = 40; // starting hunger level
while (hunger>0) {
unique_lock<mutex> ulocker(mtx);
if (!stk.empty()) {
hunger -= stk.top();
stk.pop();
ulocker.unlock() ;

cout << "I ate something. Hunger level=" << hunger << endl; 2

]

lse ulocker.unlock();
i
T

int main() <
thread tf(feed), tel(eat);
tf.join();
te.join();
return O;

¥
ISOTDAQ’16, Rehovot - V. E. Ozcan

. but allows unlock before the destructor

18

ate something. Hunger level=40
ate something. Hunger level=39
ate something. Hunger level=37
ate something. Hunger level=34
ate something. Hunger level=30
ate something. Hunger level=25
ate something. Hunger level=19
ate something. Hunger level=12
ate something. Hunger level=4

ate something. Hunger level=-5

HHHHHHHHHH

Food stack is on our shared
memory.

Hence the mutex.

Each second feed() puts in
larger and larger pieces.

What is eat() really eating?

Lots of CPU cycles.

CONDITION VARIABLES

#include <iostream>
#1include <thread>
#1include <stack>
#include <mutex>
#include <chrono>

std: :mutex mtx;
std::stack<int> stk;

std::condition_variliable cwvar;

using namespace std;

vold feed() {

for (int 1=0; 1<10; ++i) { // growing food size

unique_lock<mutex> ulocker(mtx); // like lock_guard, but ...
stk.push(i);
ulocker.unlock(); // ... but allows unlock before the destructor
cvar.notify_one(); // if there are waiting threads, notify one
this_thread::sleep_for{chrono: :seconds(1));

b

void eat() { // non-polling version

int hunger = 40; // starting hunger level

while (hunger>0) {
unique_lock<mutex> ulocker(mtx);
cvar.wait(ulocker, [J(){ return 'stk.empty(); });
hunger -= stk.top();
stk.popf();
ulocker.unlock();
cout << "I ate something. Hunger level='

<< hunger << endl; ¥
¥

int main() {
thread tf(feed), te(eat);
tf.join();
te.join();
return O;

3
IO T ACLIG Rt N B Ot 19

We could also add some sleep
(say 50ms) to eat(): when no new

food, why not just say,
this thread::sleep for(ch

rono::milliseconds(50)); ?

But isnt there a method without
any polling?

Once the food is ready we notify
(any) one thread that is waiting.

Hungry eat() is sleeping. If it
wakes up on its own, it goes back
to sleep if !stk.empty().
Otherwise it wakes up thanks to
the notification and eats.
Yummy...

#1include
#1include
#1include
#1include

int counter(0); // a global counter
int complete(0); // counting the completion of each thread

vold testfunction(int tid) {
std::cout << "Hey I am here
for (int 1=0;
complete++;

b

int main() L

A/ this gives 8 on my hyperthreaded 4-core machine
const int nhardthread = std::thread: :hardware_concurrency() ;

std::vector{std: :thread> t;
for (int 1=0;

for (auto& th

/7 Give 1.5 seconds to the threads so they finish (no guarantee)

std::this_thread::sleep_for (std::chrono::milliseconds(1500));

std::cout << "All the threads counting together
std::cout << "# of completed threads

return 0O;

L

{iostream>
{thread>
{vector>
{chrono>

{<{ tid << std::endl;

1<10000; A/ an important computation

++counter;

1<{nhardthread;
t.push_backistd: :thread(testfunction,i+l)); 1
: t) th.join();

++1) 1

{<{ counter << std::endl;
" << complete << std::endl;

All the threads counting together

of completed threads
ISOTDAQ’16, Rehovot - V. E. Ozcan

18134

S 1863

ARE MUTEXES ALWAYS NECESSARY?

The same code but this time it
also performs a very important
computation: “counting up to
10k 8 times”.

Scrambling is not an issue
now. Whichever thread
gets to the resource, let it
use it.

Removed the mutex,
because “we want the
counting part to be
concurrent”. (You think
you are smart, dont you?)

We give 1.5 seconds for the
completion of threads.

But the output is wrong and it
is changing each time we run
the code.

Why? What is wrong? Are
printing before the
threads finish their
computations? But
#completed is 8.

NEED FOR ATOMICITY

CPU is much faster than the memory. In order to overcome the memory latency, memory
caches are used.

Each core/CPU has its own cache. However if a value in one cache is updated, the
value in the other caches become invalid.

There are cache-coherence protocols to overcome these issues. But even with those,
unless you apply a memory model in your programming language, you will end up with
issues.

If we simplify this: Consider one thread reads the value of the counter, but before it
writes back the incremented value, another thread reads the old value of the counter.

alue->9Y $ v ¢ value=1(
alue->¢ C ’ 2 value=1C

std::atomic<int> counter(0); // a global counter It is impor'l'an'l' that read-increment-write
int complete(0); // counting the completion of eac is done Cl"'OlT\iCG“Y' nofhing should be able
void testfunction(int tid) { to break that. Use std::atomic<int>.

std::cout << "Hey I am here " << tid << std::enc

for (int 1=0; 1<10000; ++i) ++counter; // an 1 All the threads counting together = 80000

complete++; # of completed threads = 8

1

ISOTDAO 6. Rehovot- V. B Ozcan 21

#1include
#1include
#1include
#1include

{iostream>
{thread>
{vector>
{Future>

int testfunction(int tid) 4

+

int mycounter(0);
std::cout << "Hey I am here
for (int 1=0; 1<10000; ++1i)
return mycounter;

" (< tid << std::endl;
++mycounter; S/ the difficult computation

int main() <

+

/7 thlis gives 8 on my hyperthreaded 4-core machine
const int nhardthread = std::thread: :hardware_concurrencyl();

std: :vector<std: :future<int>> futureresults(8);

for (int 1=0; i<nhardthread; ++i) {
futureresults[i] = std::asyncistd::launch::async,testfunction,i+l); 1
int counter(0);

for (autol fr : futureresults) {
counter += fr.get();

std::cout << "All the threads counting together = {<{ counter << std::endl;

return 0O; HHeeyy IHI HHe aeeHyaHmyyeH me
ea mah mhlh me2 e

eh r8 .

All the threads counting together = 80000

yel yhII y h e I aelraa Imr emma

ISOTDAO 6. Rehovot- V. B Ozcan 22

S 1863

MESSAGES FROM THE FUTURE

As an alternative,
we can let each
thread to perform
the difficult
computation on local
variables and
return the result.

But when will they
complete their
computations?

Who cares?
Sometime in the
future we will
know the result.

S 1863

CLOSING ADVICE

1989 © DEC

An Introduction to Programming with Threads

Andrew D. Birrell

This paper provides an introduction to writing concurrent programs with “threads”. A threads
facility allows you to write programs with multiple simultaneous points of execution,
synchronizing through shared memory. The paper describes the basic thread and
synchronization primitives, then for each primitive provides a tutorial on how to use it. The
tutorial sections provide advice on the best ways to use the primitives, give warnings about
what can go wrong and offer hints about how to avoid these pitfalls. The paper is aimed at
experienced programmers who want to acquire practical expertise in writing concurrent
programs.

There is a revised version with C#, 2005 © Microsoft.

The Little Book of Semaphores

Second Edition

Version 2.1.5

Copyright 2005, 2006, 2007, 2008 Allen B. Downey

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.1 or any later ver-
sion published by the Free Software Foundation; this book contains no Invariant

Sections, no Front-Cover Texts, and no Back-Cover Texts.

T

EARIET T

ISOTDAQ’16, Rehovot - V. E. Ozcan

s estmtsseslisiGonsrn S

Memory Barriers: a Hardware View for Software Hackers

Paul E. McKenney
Linux Technology Center
IBM Beaverton
paulmck@us.ibm.com

April 5, 2009

So what possessed CPU designers to cause them
to inflict memory barriers on poor unsuspecting SMP
software designers?

In short, because reordering memory references al-
lows much better performance, and so memory barri-
ers are needed to force ordering in things like synchro-
nization primitives whose correct operation depends
on ordered memory references.

Getting a more detailed answer to this question
requires a good understanding of how CPU caches
work, and especially what is required to make caches

ing ten instructions per nanosecond, but will require
many tens of nanoseconds to fetch a data item from
main memory. This disparity in speed — more than
two orders of magnitude — has resulted in the multi-
megabyte caches found on modern CPUs. These
caches are associated with the CPUs as shown in Fig-
ure 1, and can typically be accessed in a few cycles.!

CPUO CPU 1

really work well. The followinﬁ sections:

Learn it like a pro.
Old ISOTDAQ lectures are available online.
ISOTDAQ’12, Giovanna’s lecture with Java.

5

ISOTDAQ'13, Gokhans lecture with C+11
& pthreads + signal handling.

ISOTDAQ’15, Giusppes lecture with extra
information on the HW side

http://www.greenteapress.com/semaphores/
https://birrell.org/andrew/papers/035-Threads.pdf
http://web.mit.edu/6.826/www/notes/HO16.pdf
http://www.rdrop.com/users/paulmck/scalability/paper/whymb.2009.04.05a.pdf

CONCLUSION

Parallel programming is fast becoming a must...
It is not easy, but:

At least it is easier than it used to be. Concurrent code is also a lot more portable
than before.

It can be quite a lot of fun.
This lecture is only the tip of the iceberg.

Two “concurrent” learning steps needed: (1) play with the code freely on your own, making
your own mistakes; (2) study at least the classical examples from a decent source.

More than any other programming experience, concurrent programming requires some
reformulating your ideas in foreign ways.

Its syntax is easy to learn, but it requires a new point of view.

Homework:

Implement a solution to the dining savages problem (or pick another problem of your liking
from the Little Book); OR:

Integrate some function, say sin20, using Monte Carlo integration distributed over a number
of threads. Measure the speedup. Test how well hyperthreaded cores behave.

ISOTDAO 6. Rehovot- V. B Ozcan 24

