

25th January - 2nd February 2016

Weizmann Institute of Science, Rehovot, Israel

Trigger and Data Acquisition

Trigger architectures

F.Pastore (Royal Holloway Univ. of London)

francesca.pastore@cern.ch

Build up a trigger system

Ensure good efficiency with...

Robustness! Win against the unexpected!

- Flexibility: to cope changes in conditions and background
 - Programmable thresholds, high granularity to maintain uniform performance, able to follow changes of luminosity, beam-size and vertex position, able to reach physics results also after 10 years of data taking
- Redundancy: to make trigger rates independent from the detector and the collider performance
 - Different backgrounds can change the event shape and dimension, so the result of your trigger selection
- **Selectivity**
 - Good granularity and good resolution of the parameters to ensure good rejection of the unwanted background

The simplest trigger system

- Source: signals from the Front-End of the detectors
 - Binary trackers (pixels, strips)
 - Analog signals from trackers, time of light detectors, calorimeters,....

- The simplest trigger is: apply a threshold
 - Look at the signal
 - Apply a threshold as low as possible, since signals in HEP detectors have large amplitude variation
 - Compromise between hit efficiency and noise rate

Signals are different...

- Pulse width
 - Limits the effective hit rate
 - Must be adapted to the desired trigger rate
- Time walk
 - The threshold-crossing time depends on the amplitude of the signal
 - Must be minimised in a good trigger system

- If two signals have identical rise time, at different amplitude, the time walk can be eliminated triggering when a certain fraction of the amplitude is passed
 - Good for scintillation detectors and PMT pulses mainly

The constant fraction discriminator

If two signals have the same rising time at a fraction \mathbf{f} $\mathbf{t}(A_f) - \mathbf{t}(A_0) = \mathbf{constant}$

 \rightarrow A(delay, t) - f \bullet A(t) = 0 at t_{CFL}

- – Input pulse
- " " " Delayed input pulse
- · Attenuated inverted input
 - Bipolar pulse

- Attenuation and delay (configurable) applied before the discrimination determines t_{CFD}
- If the delay is too short, the unit works as a normal discriminator because the output of the normal discriminator fires later than the CFD part

The output of the CFD fires when the bipolar pulse changes polarity

And now build your own trigger system

- A simple trigger system can start with a NIM crate
- Common support for electronic modules, with standard impedance, connections and logic levels: negative
 - -16 mA into 50 Ohms = -0.8 Volts

Threshold levels are configurable via screwdriver adjust

Trigger logic implementation

- Analog systems: amplifiers, filters, comparators,
- Digital systems:
 - → Combinatorial: sum, decoders, multiplexers,....
 - **尽** Sequential: flip-flop, registers, counters,....
- Converters: ADC, TDC,

LeCroy Concidence Unit

Summary of the trigger requirements

- High Efficiency
 - **Low dead-time**
 - Fast decision
- Reliability and robustness
- Flexibility

Trigger and data acquisition trends

$$R_{DAQ} = R_T^{max} \times S_E$$

As the data volumes and rates increase, new architectures need to be developed

A simple trigger system

- Due to **fluctuations**, the incoming rate can be higher than processing one
- Valid interactions can be rejected due to system busy

Dead-time

- The most important parameter in designing high speed **T/DAQ systems**
 - 7 The fraction of the acquisition time in which no events can be recorded. It can be typically of the order of **few** %
- Occurs when a given step in the processing takes a **finite amount of time**
 - Readout dead-time
 - 7 Trigger dead-time
 - Operational dead-time

Affects efficiency!

Fluctuations produce dead-time!

Maximise recording rate

 R_T = Trigger rate (average)

R = Readout rate

 T_d = processing time of one event

fraction of lost events $R \times T_d$ number of events read: $R = (1 - R \times T_d) \times R_T$

$$\frac{R}{R_T} = \frac{1}{1 + R_T T_d}$$
Fraction of surviving events!

- We always lose events if $R_T > 1/T_d$
- If exactly $R_T = 1/T_d$ -> dead-time is 50%

The trick is to make both R_T and T_d as small as possible (R^R_T)

FAST TRIGGER! LOW INPUT RATE

A simple trigger system

Features to minimize dead-time

- 7 1: Parallelism
 - Independent readout and trigger processing paths, one for each sensor element
 - Digitization and DAQ processed in parallel (as many as affordable!)

Segment as much as you can!

DZero calorimeters showing the transverse and longitudinal segmentation pattern

- **2: Pipeline processing** to absorb fluctuations
 - Organize the process in different steps
 - Use local buffers between steps with different timing

$$\frac{R}{R_T} = \frac{1}{1 + R_T T_d}$$

Try to absorb in capable buffers

Minimizing readout dead-time...

- **Parallelism**: Use multiple digitizers
- Pipelining: Different stages of readout: fast local readout + global event readout (slow)

Trigger latency

- Time to form the trigger decision and distribute to the digitizers
- Signals are delayed until the trigger decision is available at the digitizers
 - But more complex is the selection, longer is the latency

Add a pre-trigger

- Add a very fast first stage of the trigger, indicating the presence of minimal activity in the detector
 - **START the digitizers**, when signals arrive
 - 7 The main trigger decision come later (after the digitization) -> can be more complex

Coupling trigger rate and readout

- Extend the idea... more levels of trigger, each one reducing the rate, even with longer latency
- Dead-time is the sum of the trigger dead-time, summed over the trigger levels, and the readout dead-time

$$(\sum_{i=2}^{N} R_{i-1} \times L_i) + R_N \times T_{LRO})$$

i=1 is the pre-trigger

 $R_i\,$ = Rate after the i-th level

 L_i = Latency for the i-th level

 $T_{
m LRO}$ = Local readout time

Readout dead-time is minimum if its input rate R_N is low!

Try to minimize each factor!

Buffering and filtering

- At each step, data volume is reduced, more refined filtering to the next step
 - 7 The input rate defines the filter processing time and its buffer size
 - 7 The output rate limits the maximum latency allowed in the next step
 - 7 Filter power is limited by the capacity of the next step

As long as the buffers do not fill up (overflow), no additional dead-time is introduced!

Rates and latencies are strongly connected

- If the rate after filtering is higher than the capacity of the next step
 - Add filters (tighten the selection)
 - Add better filters (more complex selections)
 - Discard randomly (pre-scales)
- Latest filter can have longer latency (more selective)

Multi-level triggers

- Adopted in large experiments
- Successively more complex decisions are made on successively lower data rates
 - First level with short latency, working at higher rates
 - Higher levels apply further rejection, with longer latency (more complex algorithms)

LHC experiments @ Run1

Ехр.	N.of Levels
ATLAS	3
CMS	2
LHCb	3
ALICE	4

Efficiency for the desired physics must be kept high at all levels, since rejected events are lost

for ever

More complexity

Longer latency

Bigger buffers

More granularity information

Schema of a multi-level trigger

- Different levels of trigger, accessing different buffers
- 7 The pre-trigger starts the digitisation

Schema of a multi-level trigger @ colliders

- The BC clock can be used as a pre-trigger
 - First-level trigger is **synchronous** to the collision clock: can use the time between two BCs to make its decision, without dead-time, if it's long enough

7

Synchronous or asynchronous?

- **Synchronous**: operations in phase with a clock
 - All trigger data move in lockstep with the clock through the trigger chain
 - Fixed latency
 - The data, held in storage pipelines, are either sent forward or discarded
 - If buffer size ≠ latency → truncated events
 - Used for L1 triggers in collider experiments, making use of the bunch crossing clock
 - Pro's: dead-time free (just few clock cycles to protect buffers)
 - **Con's**: cost (high frequency stable electronics, sometimes needs to be custom made); maintain synchronicity throughout the entire system, complicated alignment procedures if the system is large (software, hardware, human...)

Synchronous or asynchronous?

- Asynchronous: operations start at given conditions (when data are ready or last processing is finished)
 - Used for larger time windows
 - Average latency (with large buffers to absorb fluctuations)
 - If buffer size ≠ dead-time → lost events
 - Used also for software filters
 - **Pro's**: more robust against bursts of data; running on conventional CPUs
 - **Con's**: needs a timing signal synchronised to the FE to latch the data, needs time-marker stored in the data, data transfer protocol is more complex

Level-1: reduce the latency

- Pipelined trigger
- Fast processors
- Fast data movement

Chose your detector

- Use analogue signals from existing detectors or dedicated "trigger detectors"
 - Organic scintillators
 - Electromagnetic calorimeters
 - Proportional chambers (short drift)
 - Cathode readout detectors (RPC,TGC,CSC)
- With these requirements
 - Fast signal: good time resolution and low iittering
 - Signals from slower detectors are shaped and processed to find the unique peak (peak-finder algorithms)
 - High efficiency
 - (often) High rate capability
- Need optimal FE/trigger electronics to process the signal

Synch level-1 trigger @ colliders

$$R=\mu \text{ } f_{BC} \neq \sigma_{in} \cdot L$$
 LEP: 22 μs Tevatron: 396 ns
$$\frac{1}{2} \frac{1}{2} \frac{1}{2$$

- **@LEP**, BC interval **22** μ**s**: complicated trigger processing was allowed
- In modern colliders: required high luminosity is driven by high rate of BC
 - **It's not possible to make a trigger decision within this short time!**

Level-1 pipeline trigger

- With a synchronous system and large buffer pipelines we can allow long fixed trigger latency (order of μ s)
 - Latency is the sum of each step processing and data transmission time
- Each trigger processor concurrently processes many events
 - Divide the processing in steps, each performed within one BC

Example: HERA-B track finder

- Iterative algorithm: each step processes only a small Region of Interest (RoI) defined by the previous step
 - Each unit handles only the hit information corresponding to a small part of the detector
 - Only units whose region is touched by the Rol will process it
- Two data streams:
 - Detector data transferred to on-board memory synchronously with BC clock (left to right)
 - Rol data transferred asynchronously from unit to unit (top to bottom)

Choose your L1 trigger system

- Modular electronics
 - Simple algorithms
 - 7 Low-cost
 - Intuitive and fast use

Digital integrated systems

- Highly complex algorithms
- Fast signals processing
- Specific knowledge of digital systems

Level-1 trigger processors

Requirements at high trigger rates

- Fast processing
- **◄** Flexible/programmable algorithms
- Data compression and formatting
- Monitor and automatic fault detection
- Digital integrated circuits (IC)
 - Reliability, reduced power usage, reduced board size and better performance
- Different families on the market:
 - Microprocessors (CPUs, GPGPUs, ARMs, DSP=digital signal processors..)
 - Available on the market or specific, programmed only once
 - **Programmable logic devices** (FPGAs, CAMs,...)
 - More operations/clock cycle, but costly and difficult software developing
 - New trend is the integration of both:
 - Using standard interface (ethernet), can profit of standard software tools (like for Linux or real-time) and development time is reduced

Custom trigger processors?

- Application-specific integrated circuits (**ASICs**): optimized for fast processing (Standard Cells, full custom)
 - ☐ Intel processors, ~ GHz
- Programmable ASICS (like Field-programmable gate arrays, FPGAs)
 - **Table 2** Easily find processors @ 100 MHz on the market (1/10 speed of full custom ASICs)

Example: logic of a trigger ASIC

Coincidence Matrix ASIC for Muon Trigger in the Barrel of ATLAS

Trends in processing technology

- Request of higher complexity → higher chip density → smaller structure size (for transistors and memory size): 32 nm → 10 nm
 - Nvidia GPUs: 3.5 B transistors
 - Virtex-7 FPGA: 6.8 B transistors
 - 7 14 nm CPUs/FPGAs in 2014
- For FPGAs, smaller feature size means higher-speed and/or less power consumption
- Multi-core evolution
 - Accelerated processing GPU+CPU
 - Needs increased I/O capability
- Moore's law will hold at least until 2020, for FPGAs and co-processors as well
- Market driven by cost effective components for Smartphones, Phablets, Tablets, Ultrabooks, Notebooks
- Read also: http://cern.ch/go/DFG7

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Moore's Law: the number of transistors that can be placed inexpensively on an integrated circuit doubles approximately every two years (Wikipedia)

Data movement technologies

- Faster data processing are placed on-detector (close or joined to the FE)
- Intermediate crates are good separation between FE (long duration) and PCs

- High-speed serial links, electrical and optical, over a variety of distances
 - Low cost and low-power LVDS links, @400 Mbit/s (up to 10 m)
 - Optical GHz-links for longer distances (up to 100 m)
- ➢ High density backplanes for data exchanges within crates
 - High pin count, with point-to-point connections up to 160 Mbit/s
 - Large boards preferred

Example: ATLAS calorimeter trigger

- On-detector:
 - Sum of analog signals from cells to form towers
- L1 trigger system is off-detector
- Pre-processor board
 - ADCs with 10-bit resolution
 - → ASICs to perform the trigger algorithm
 - Assign energy (ET) via Look-Up tables
 - Apply threshold on ET
 - Peak-finder algorithm to assign the BC

Example: ATLAS calorimeter trigger

- Cluster Processor (CP)
- Jet/Energy Processor (JEP)
- Implemented in FPGAs, the parameters of the algorithms can be easily changed
- Total of 5000 digital links connect PPr to JEP and CP, 400 Mb/s

High level triggers

High Level Trigger Architecture

After the L1 selection, data rates are reduced, but can be still massive

	Levels	L1 rate (Hz)	Event size	Readout bandw.	Data filter out
LEP	2/3	1 kHz	100 kB	few 100 kB/s	~5 Hz
ATLAS	2/3	100 kHz (L2: 10 kHz)	1.5 MB	30 GB/s (incremental Event Building)	~1 kHz
CMS	2	100 kHz	1.5 MB	100 GB/s	~1 kHz

- **▼ LEP**: 40 Mbyte/s VME bus was able to support the bandwidth
- LHC: latest technologies in processing power, high-speed network interfaces, optical data transmission
- High data rates are held with different approaches
 - Network-based event building (LHC example: CMS)
 - **尽** Seeded reconstruction of data (LHC example: ATLAS)

Can we use the offline algorithms online?

MDDAG, Benbouzid, Kegl et al.

Pattern recognition in dense environment?

Latency is the constraint!

HLT design principles: early rejection

- **Early rejection** is crucial to
 - **₹** Reduce the data flux to the Readout buffers
 - Reduce resources (CPU usage, memory consumption....)
- Alternate steps of **feature extraction with hypothesis testing** allows to apply different hypothesis on the same feature
 - Can be optimized in different ways
- A complex scheduling can optimise the processing
 - First call algorithms which are fast and with higher rejection
 - Avoid running same algorithm on same data twice
 - Cache algorithm results (memo-ization)
 - Cache input data request (deep memo-ization)
- Decision taken on partial or full Readout/reconstruction
 - Analysing data in few interesting regions (Region-of-interest)
 - The full event building is integrated in the decision process

HLT design principles

- **₹** Early rejection: alternate steps of feature extraction with hypothesis testing
 - **7** Reduce data and resources (CPU, memory....)
- Event-level parallelism
 - Process more events in parallel, with multiple processors
 - Multi-processing or/and multi-threading
- Algorithm-level parallelism
 - Need to change paradigms for software developments
 - GPUs can help in cases where large amount of data can be processed concurrently

Multi-threading

Algorithms are developed and optimized offline

Try to have common software with offline reconstruction, for easy maintenance and higher efficiency

Now you can build your own trigger system!

- Trigger and DAQ systems exploit all new technologies, being well in contact with industry
- Microelectronics, networking, computing expertise are required to build an efficient trigger system
- But being always in close contact with the physics measurements we want to study
- Here I just mentioned general problems, that will be deeply described during other lessons
- Profit of this school to understand these bonds!!

Back-up slides

Network-based HLT: CMS

- Data from the readout system (RU) are transferred to the filters (FU) through a builder network
- Each filter unit processes only a fraction of the events
- Event-building is factorized into a **number of slices**, each processing only $1/n^{th}$ of the events
 - Large total bandwidth still required
 - No big central network switch
 - Scalable

FU = several CPU cores = several filtering processes executed in parallel

Seeded reconstruction HLT: ATLAS

- Level-2 uses the information seeded by level-1 trigger
 - Only the data coming from the region indicated by the level-1 is processed, called Region-of-Interest (Rol)
 - The resulting total amount of RoI data is minimal: a few % of the Level-1 throughput
 - Level-2 can use the full granularity information of only a part of the detector
- No need of large bandwidth
- Complicate mechanism to serve the data selectively to the L2 processing

Typically, there are less than 2 Rols per event accepted by LVL1

