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USE THIS MATERIAL AT YOUR OWN RISK

BE AWARE THAT ANY INFORMATION YOU MAY 
FIND MAY BE INACCURATE, MISLEADING, 
DANGEROUS, ADDICTIVE, UNETHICAL OR 
ILLEGAL

disclaimer
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HEP DAQ phase-space

Take care: different issues  different solutions→
no single magic solution to all cases
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Trying to move … 
from here:

to here:
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Medium/Large DAQ: constituents
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• Step 1: Increasing the rate
• Step 2: Increasing the sensors
• Step 3: Multiple Front-Ends
• Step 4: Multi-level Trigger
• Step 5: Data-Flow control

trying to get there in 5 steps ...
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step one: increase rate

Single-event readout:
• wait for data (poll/irq)
• read ADC
• clear & re-enable ADC
• re-format data
• write to storage

triggerdataflow
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dead time  de-randomise→
• Buffering allows to 

decouple problems

Dead time ~ (1+x)-1 ~ 50%
[ for x = 1/(f·τ) ~ 1 ]

• Processing →
bottleneck

Dead time ~ (∑0..N xj)-1 ~ 1/(N+1)
[ N = buffer depth ]
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N-event buffer ... single queue size N:
Pk : % time with k events in buffer

P
N 

= no space available  dead time→

∑Pk=1 [ k=0..N ]

rate(j j+1) = f·P→ j

rate(j+1 j) = P→ j+1/τ

stationary condition: f·Pj=Pj+1/τ  P→ j=Pj+1/(fτ)=x·Pj+1

if x~1  P→ j~Pj+1  → ∑Pk~(N+1)·P
0
=1  P→

0
~1/(N+1)

 → dead time ~ 1/(N+1)
want want ≤≤ 1%  N → 1%  N → ≥≥ 100 100

derandomisation
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Game over ?

Even in a simple DAQ 
there are many other 
possible limits
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 → the sensor
• Sensors are limited by 

physical processes, e.g.
– drift times in gases
– charge collection in Si

• (possibly) choose fast 
processes

• analog F.E. imposes limits 
as well

• split the sensors, each 
gets less rate:
“increase granularity”
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 → the ADC

• A/D F.E. is also limited
• Faster ADCs pay the price 

in precision (# of bits) 
and power consumption

• Alternatives: 
– analog buffers

• You may need integration 
(or sampling) over quite 
some time

[ see Detector Readout and FE 
lectures ]
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• HPGe + NaI Scintillator
High res spectroscopy and beta+ 
decay identification

• minimal trigger with busy logic
• Peak ADC with buffering, zero 

suppression
• VME SBC with local storage
• Rate limit ~14kHz

– HPGe signal shaping
for charge collection

– PADC conversion time
• 3x12 bits data size

(coincidence in an ADC channel)
+32bit ms timestamp

• Root for monitor & storage

an example
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 → the trigger
• a simple trigger may be ~fast
• a complex trigger logic 

may not be [ even 
when all in hw ]

• some trigger detectors may 
be far away / slow  latency→

• trigger signal is one: all 
information must be 
collected at a single point

– in one step: 
too many cables

– in many steps: 
delays

 → → discrete modules: ~ 5-10 ns delay  tot. latency →discrete modules: ~ 5-10 ns delay  tot. latency → ≥ 20-30 ns ←≥ 20-30 ns ←
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a possible 
SPS cycle

(superCycle)
beam:

2.58s / 14.4s
(flat top)

a testbeam case  DREAM→

slow extraction
Trigger = VTrigger = V××TT11××TT22 | ped | ped  easy !→
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Spill

Trigger

Veto

Ped Tr.

Ped Veto

Re-enable

Busy

Trigger OR Fast Gate

FADC Trigger
(oscilloscope)

to DAQ

from DAQ

to xDC.s

Trigger = !VTrigger = !V××TT11××TT22 | ped | ped

Other signals  →
monitoring/debugging

First discrete, then FPGA (Xilinx Spartan 3AN evaluation board)

“spill-driven” (asynchronous) trigger
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DREAM DAQ
1 PC  2 VME crates (access via CAEN optical interfaces) + 1 PC  storage→ →
6 x 32 ch xDC.s (x = Q, T : CAEN V792, V862, V775 )
1 x 34 ch (CAEN V1742) 5Gs/s Digitizer (single event: ~34x1024x12bit)
1 x 4 ch Tektronix TDS7254B 20 Gs/s oscilloscope
… few VME I/O & discriminator boards

DAQ logic spill-driven (no real time, PC with scientific linux)
in-spill (slow extraction)

a) poll trigger signal … if trigger present:
b) read all VME boards (w/ DMA, whenever possible)
c) format & store on a large buffer (FIFO over RAM)
d) re-enable trigger

out-of-spill
a) read scope (in case)  size is fixed at run start→
b.1) monitor data (produce root files)
b.2) store on disk files (beam and pedestal files) over network

rate ~ O(1 kHz)



19

 → the dataflow

• Data Processing may be ~ 
easy and scalable

• Data Transport may not be 
easy

• Final storage is expensive
(and at some point not easy 
either)  can't store all data →
you may acquire
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step two: increase # of sensors

ADC

storage

N channels

Trigger

Processing

• More granularity at the 
physical level

• Multiple channels
(usually with FIFOs)

• Single, all-HW trigger
• Single processing unit
• Single I/O
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multi-channels, single PU

ADC

storage

N channels

Trigger

Processing

• common architecture in 
test beams and small 
experiments

• often rate limited by 
(interesting) physics itself, 
not TDAQ system

• or by the sensors
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ADC

storage

N channels

Trigger

Processing

bottlenecks: PU and storage

• a single Processing Unit  
can be a limit

– collect / reformat / 
compress data can be 
heavy

– simultaneously writing 
storage

• final storage too:
– VME up to 50MB/s 

-> 1TB in 6h
too many disks in a week!

Laptop SATA disk: 54MB/s; USB2: ~30MB/s
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 → decouple storage from PU

ADC

storage

N channels

Trigger

Processing Data
Collection

• data transfer data  →
dedicated “Data Collection” 
unit to format, compress and 
store

• more room for smarter 
processing or decreased 
dead time on non-buffered 
ADCs
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bottlenecks: trigger

ADC

storage

N channels

Trigger

Processing

• to reduce data rates
(to avoid storage issues) 

 non-trivial trigger→

• complexity may already hit 
manageability limits for 
discrete logic (latency!)

• integrated, programmable 
logic came to rescue (FPGA)

 → latency may go down to 
O(few ns)
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another example: NA43/63

• Radiation processes: 
coherent emission in 
crystals and structured 
targets, LPM suppression...

• 80~120 GeV e- from
CERN SPS slow extraction

• 2s spill every 13.5s

• Needs very high angular 
resolution

• Long baseline + high-res, low 
material detectors

 drift Chambers→
• 10 kHz limit on beam for 

radiation damage
• results in typical 2~3 kHz physics 

trigger
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NA43/63
• 30~40 TDC, 6~16 QDC, 

0~2 PADC
(depends on measurement)

• CAMAC bus
1MB/s, no buffers, no Z.S.

• single PC readout
• NIM logic trigger

(FPGA since 2009)
– pileup rejection
– fixed deadtime
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step three: multiple PU (SBC)

LEP
• 105 channels
• 22μs crossing rate

–no event overlap

• single interaction

• e.g.: CERN LEP experiments 
• complex detectors, 

moderate trigger rate,
very little background

• little pileup, limited channel 
occupancy

• simpler, slow gas-based 
main trackers
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 → event building

• Event “fragments” in 
detector/sector-specific 
pipeline

• keep track of which event 
they belong to

w/ timestamp or
w/ L1 trigger #

• gather every fragment to 
single location

• synchronous/asynchronous
 

see DAQ Software lecture
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NOMAD
• Search for ν

μ
ν→

τ
 oscillations at 

the CERN WB neutrino facility
• 2.4×2.4 m2 fiducial (beam) area
• two 4ms-spills with 1.8×1013 

P.o.T. each
• a (2s) slow-extraction spill
• cycle length of 14.4 s

DAQ layout

veto counters trigger counters
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NOMAD DAQ
• ~30(?) (64 or 96 channel) Fastbus xDC boards [ x = Q, P, T ]
• Typically:

• ~15 evts each 4ms spill (neutrino triggers)
• ~60 evts each 2s-spill (muon triggers)
• 256-event calibration cycles off-spill (calibration triggers)

– On spill(cycle): on-board buffering of up to 256 events (no way to 
read event-by-event)

– End of spill(cycle): block transfer to 5 VME PU.s (motorola 68040 
FIC8234 board, OS9 real-time system)

– Event building and storage on another VME PU
– Monitoring and control on SunOs/Solaris workstations

 → on-board buffering
 → data processing is done off-beam (once more)
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Triggering once more ...
menu for NOMAD:

ν-spill triggers μ-spill triggers

veto counters (central 
shaded area is V8)

~3m

~3m
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 → FPGA.s at work
MOdular TRIgger for NOmad (MOTRINO):

6 VME boards providing local and global trigger 
generation and propagation
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bottlenecks ?

• trigger complexity  storage↔

• single HW trigger not sufficient to reduce rate
• add L2 Trigger
• add HLT
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step four: multi-level trigger

LEP
• 105 channels
• 22μs crossing rate

–no event overlap

• single interaction
• L1 ~103 Hz
• L2 ~102 Hz
• L3 ~101 Hz

• 100kB/ev → 1MB/s

Typical Trigger / DAQ structure at LEP
• more complex filters
•  → slower
•  → applied later in the chain

see Trigger lectures
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ATLAS!

LHC
• 107 channels
• 25ns crossing rate

–high event overlap

• 20 interactions
• L1 ~105 Hz
• L2 ~103 Hz
• L3 ~102 Hz

• 1MB/ev → 
100MB/s

ATLAS T&DAQ Why & How, L. Mapelli @ISOTDAQ 2010
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LHC (collider)  sinchronous→

… nevertheless, high luminosity & high cross sections  →
high rate, high-pileup, large events:

 ➔ most events uninteresting
 ➔ good events (triggers) arrive uncorrelated 

(unpredictable)
 ➔ de-randomization is still needed

 → dataflow is an issue
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ATLAS run-1 architecture

• Still 3-level trigger
• buffers everywhere
• L2 on CPU, not HW, but 

limited to ROIs
• L3 using offline algorithms
• “economical” design: the 

least CPU and network for 
the job

see “TDAQ for LHC” lecture
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ATLAS run-2 architecture

 → Merge L2 and L3 into a single HLT farm
– preserve Region of Interest but dilute the farm separation and 

fragmentation
– increase flexibly, computing power efficiency



39

CMS TDAQ Design - S. Cittolin @ISOTDAQ 2010

CMS!
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CMS architecture
• Only two trigger levels
• Intermediate event building 

step (RB)
• larger network switching
see “TDAQ for LHC” lecture

• upgrade: no architectural changes but:
– all network technologies replaced

• Myrinet  Ethernet→
• Ethernet  Infiniband→

– file-based event distribution in the farm
• full decoupling between DAQ and HLT
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Evolution for LHC Run 2

ATLAS:
more like CMS

… still using “L2” ROI, but 
as first step of a unified 
L2/EB/HLT process

CMS:
more like ATLAS

… still doing full EB, but 
analyse ROI first

DAQ@LHC Joint Workshop 2013 :
http://indico.cern.ch/conferenceOtherViews.py?view=standard&confId=217480

Evolution for LHC Run 2
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step five: dataflow control

• Buffers are not the <final 
solution> they can overflow due 
to:

– bursts
– unusual event sizes

• Discard
– local, or
– “backpressure”, 

tells lower levels to discard

Who controls the flow?
 The FE (push) or the EB (pull)
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a push example: KLOE
• DAΦΝΕ e+e- collider in 

Frascati
• CP violation parameters in the 

Kaon system
• “factory”: rare events in a 

high-rate beam

• 105 channels
• 2.7ns crossing rate

– rarely event overlap
– “double hit” rejection

• high rate of small events
• L1 ~104 Hz

– 2μs fixed dead time
• HLT ~104 Hz

– ~COTS, cosmic rejection 
only

• 5kB/ev  50→ MB/s [design]
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KLOE

• deterministic FDDI 
network

• not real need for buffering 
at FE

• push architecture
vs pull used in ATLAS
see DAQ Software lecture

• try EB load redistribution 
before resorting to 
backpressure

EB

Which LHC experiment has a somewhat 
similar dataflow architecture ?
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LHCb: dataflow is network

The LHCb Data Acquisition during LHC Run 1
CHEP 2013

more info in “TDAQ for the LHC experiments”
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Trends

• Integrate synchronous,
low latency in the front end

– the limitations discussed 
do not disappear, but 
decouple (factorise)

– all-HW implementation
– isolated in replaceable(?) 

components 

• Use networks as soon as 
possible

• Deal with dataflow instead 
of latency

• Use COTS network and 
processing

• Use “network” design 
already at small scale

– easily get high 
performance with 
commercial components
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Back to basics ?
• (12) In [protocol] design, perfection has been reached not when there is 

nothing left to add, but when there is nothing left to take away.
RFC 1925 The Twelve [Networking] Truths

After adding all these levels of 
buffering, indirection, 
preselection, pre-preselection ...
… what if we threw it all away?

Well, sometimes we can, 
sometimes we can't.

see TDAQ for the LHC experiments
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take care #1, lot of issues not covered:
Hw configuration
Sw configuration
Hw control & recovery
Sw control & recovery
Monitoring
…

take care #2:
in average things (often) do work, but what 
about fluctuations/exceptions ?
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Thank you for your patience ...
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