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Very few words about the MEG experiment
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• “Tiny” collaboration

• Search µ->eγ with 5x10^(-13) sensitivity on the 
process @Paul Scherrer Institut, Villigen  
Switzerland
• CERN recognised experiment in the intensity frontier

• prohibited in SM -> new physics?/! (SUSY?)

• positive µ-beam stopped in a thin target       
(3x10^7 µ/sec)
• positron detector 

• non-uniform magnetic field COBRA to bend positrons

• tracking with segmented wire drift chambers

• timing with plastic scintillator bars read by PMTs 
(Timing Counter)

• photon detector
• Liquid Xenon calorimeter read with PMTsµ-

be
am
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Requirements to the TDAQ
• An experiment in the intensity frontier 

demands for:
• statistics -> high beam intensity (and associated 

raw event rate and detector occupancy)
• electronics to resolve any possible pile-up within 

few ns in detectors
• use of GSPS waveform digitisers, no TDC and 

QDC

• resolution -> background suppression
• development of detector with unprecedented 

resolutions at signal energy (52.8 MeV)
• high precision electronics for charge and time 

measurements

• stability -> systematics under control 
• the detector stability measured with a redundant 

set of calibration methods (evolving year by 
year)

• trigger system flexible to cope with any 
experimental requests

3

signal 
position

γ spectrum  
from µ decay 
very steep at 

kinematical edge
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Readout choice: the DRS chip
• The Domino Ring Sampler

• waveform digitiser developed at Paul 
Scherrer Institut 

• capacitor array to store the charge from 
detector signals, each capacitor is a “bin” 
in our waveform
• read out with external ADC

• sampling speed tuneable from 800 
MSPS to 5 GSPS

• waveform width = 1024 bins (from 12.8 
µs to 200 ns)
• time resolution demands for sampling 

speed greater that 1.5 GSPS - 600 ns 
memory depth
• requirement on trigger latency! 
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DAQ electronics
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• DRS chips in VME boards
• 32 channel per board

• 5 crates
•  20 boards per crate

• 640 channels per crate

• Boards read-out with 32 bit - 2eVME protocol
• 80 MB/s transfer speed

Introduction to VME bus 
M. Joos
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Event occurence
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wfm size

ADC bin

sliding direction
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Trigger too early
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wfm size

ADC bin

Signal trailing 
edge partially 

lost

Don’t worry, 
usually the 

trigger is never 
too fast….
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Right trigger time
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wfm size

ADC bin

Wfm 100% 
contained

Baseline before 
and after the 

pulse to check 
noise and pile-up
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Trigger too late…
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wfm size

ADC bin

Rising edge lost

Need of a faster 
trigger or a 

delayed signal
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Waveform digitiser and trigger latency

• The DRS is continuously recording detector signals
• (1) a pulse is generated on the sensor

• (2) the pulse is well centred in the recording memory, the ADC bins in from of pulse are needed for 
waveform analysis!

• it is time to fire the trigger (if “good” event)

• (3) the pulse is being overwritten in the memory
• the trigger would be to late, the event could not be reconstructed

• The trigger latency is defined by ADC memory size
• is it possible to extend the memory? NO… it is defined by chip design

• is it possible to delay signals? If possible NO… may spoil time resolution  
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wfm size wfm size wfm size

ADC bin ADC bin ADC bin

1 2 3
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• The trigger will be a separate system

• Latency requirements
• DRS with 1.6 GSPS (600ns waveform width)

• ~50 ns are required before the pulse in DRS waveforms for offline processing

• ~50 ns is a conservative estimate for the trigger signal distribution from the trigger to the DAQ

• the decision must be taken as fast as 500 ns after the event occurrence

• at trigger level only fast detectors are used: LXe calorimeter and Timing Counter (plastic scintillator detector)

• Flexibility requirements
• the system have to cope with any possible experimental needs

• …and there are really a lot of!

• FPGA based trigger
• Xilinx Virtex-II pro FPGA (bought in 2004)

• algorithm execution frequency to be 100 MHz

• VME boards
• used for board configuration and monitoring @trigger level

• Multi layer system
• transmission with LVDS serialiser-deserialiser, 4.8Gbit/s per connection

Trigger technology choice

11

Introduction to FPGAs 
Hannes Sakulin
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Overview of the trigger system

• Three layers system
• Type1 board 

• 6U VME board

• receiving detector data
• equipped with FADC 

100MHz - 10 bit

• Type2 board
• data processing and 

transmission to next level
• the master performs last 

algorithm steps and 
fires the trigger signal

12
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Some pictures… trigger boards

13

Type1-6U Type2-9U
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Some pictures… trigger boards
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Type1-6U
Used in exercise 4:

A Type-1 as a (simple) TDAQ 
system to select cosmic muons 
tracks through a scintillator pair 
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The trigger system at PSI

15

Type1 6U crate

Type2 9U crate

Type1 6U crate
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• The raw data are scattered over several VME crate
• each crate is read-out after any trigger by dedicated CPU that create a fragment

• all the fragments sent to the main CPU 
• what happens if at a certain point a fragment is loss?? 

• fragment belonging different events are mixed
• data useless!!

• The solution is the trigger bus: from the trigger to the DAQ crates
• event number + event code (trigger type)

• connected via the VME transition boards on the backplane

Trigger bus and event building

16

trigger busTRG system

DAQ crate0 DAQ crate1 DAQ crate N-1 DAQ crate N
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Read out architecture - MIDAS

17

Data pre-processing
zero-suppression

with threaded
programming

Introduction to DAQ 
A. Negri slide 39
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Read out architecture - MIDAS

18

Data pre-processing
zero-suppression

with threaded
programming

Introduction to DAQ 
A. Negri slide 39
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A zero-suppression example

19

1.6 GSPS

re-binned
by factor 10

Almost a factor 2 gain 
in data size BUT no 
~information lost

No ultimate re-binning 
(QDC-like) to be 

sensitive to pile-up
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Some consideration about DAQ efficiency

• DAQ efficiency is defined as
• DAQLiveTime x Trigger Efficiency

• This quantity has to be as large as possible in any 
TDAQ system

• Compromise…
• milestones! let’s start from dead time…

20

TRG eff lower thr - higher TRG rate DAQ LT

TRG eff higher thr - lower TRG rate DAQ LT

Introduction to trigger 
F. Pastore slide 13



Rehovot, 31-01-2016 L. Galli, INFN Pisa

Read-out dead time
• As a first attempt let’s try with a single buffer 

read-out
• the system is in dead time during the read-out 

of a crate through VME

• the dead time is dictated by the heaviest crate

• the associated DAQ live time is given by the 
probability to have 0 event during the read-
out (trigger rate = 7 Hz, Poisson event 
distribution)

• Requirement for the trigger rate
• which trigger algorithms can we use?

• what about the rejection power?

21
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• Goal: DAQ rate of about 7 Hz

• Use of prompt response detectors
• LXe calorimeter (photon energy, time and direction)

• Timing Counter (positron time and hit position)

• Synchronous processing with FPGA
• algorithms to use 1 CLK cycle per operation (if possible)

• registers, adders, subtracters, comparators for simple operations

• Look Up Tables for more complex operations, for example products  

• Online observables 
• photon energy

• photon-positron timing

• photon-positron space correlation

• The discrimination on photon energy has the largest 
background rejection power

• take care about it!

Considerations about trigger algorithms

22

This choice is driven by physics  
and your detector!

52.8 MeV
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Online energy reconstruction
• Synchronous sum of the LXe waveform samples

• the peak of the obtained waveform is the online energy estimate 

• Algorithm highlights
• online pedestal subtraction

• the baseline value may differ from channel to channel (remember QDC in lab4)
• refer the waveform to a common value (0 ADC counts) before the sum stage 

• channel calibration with Look Up Table
• for example in case of PhotoMulTipliers gain and Quantum Efficiency 

calibration

23

threshold

wfm peak discriminator
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Raw waveforms from ADC

24
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…online pedestal subtraction…
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Firmware for online pedestal subtraction

26

pipeline with 
shift registers

mean value from 
last 4 samples in pipeline 

as pedestal estimator

pedestal subtraction in 1 CLK cycle!! 
10 ns

If the sample is larger than 
threshold it is not included 

in the pipeline

Algorithms with  
schematic 
language 

VME  protocol 
+ some 

algorithm with 
verilog

Advanced FPGA programming 
Manoel Barros Marin
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…again pedestal subtracted wfms..
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…channel calibration…
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Reconstruction calibration!
• By applying a refined calibration reconstruction improves!

• better reconstruction -> higher threshold with same efficiency on signal -> lower trigger rate   
-> higher DAQ Live Time with the same trigger efficiency
• improvement of the DAQ efficiency

• It is important to get the best from the system with the available techniques!

29

17.6 MeV γ-line used for calorimeter calibration
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…and finally coherent sum
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Run configuration and monitoring
• The trigger system provides the DAQ with 32 different 

selection algorithms
• the trigger type are order by priority

• pre-scaling factors 
• programmable fraction of minimum bias selection in the data 

stream
• trigger efficiency studies
• detector calibration and monitoring

• physics analysis, normalisation evaluation

• This flexibility is crucial to take under control the detector
• the run configuration is store in a database 

• give access to the shift crew
• default run configuration available 
• metadata for analysis (as discussed in lab 4) 

• GUI to check data quality online
• events “pictures’’

• not so precise but sensitive to major problems 

• Automatic analysis right after the acquisition to check 
further the data quality

• histograms for detector debugging
• dead channels, electronic noise…

31

main selection 
95% of triggers

pre-scaled selection triggers 
for calibration and monitoring

electromagnetic calorimeter picture

Introduction to trigger 
F. Pastore slide 34
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Trigger efficiency

32

Error function from 
the ratio of spectra 

acquired with 
different energy 

thresholds 

Analisys
region

Introduction to trigger 
F. Pastore slide 28 Analisys

region
trigger efficiency with  
pre-scaled triggers
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DAQ efficiency: measurement and optimisation

• First run in 2008: DAQ efficiency = 55%
• “preliminary” trigger system configuration

• first run with a complete detector

• calibration not optimised yet

• The DAQ (trigger) efficiency measured at the 
end of data taking

• the selection has to be trained with data

• the higher Live Time is NOT the experimental 
working point

• but the Live Time is measured online…

• How to find the best working point?
• trigger “simulation” with real data

• modify selection and predict the trigger rate and 
efficiency with no algorithm improvement

• improve the selection algorithms

• for example improve calibrations!

• By algorithm refinement we reached 75% DAQ 
efficiency

33
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Is it possible to improve further?
• Many possibilities

• reduce dead time read out
• zero-suppression of FPGA to neglect the read-out of “empty” channels

• this is dangerous with an homogeneous calorimeter…

• Use 2eVME D64 read-out (160 MB/s instead of 80 MB/s)
• you have to foreseen it at design phase… 

• unfortunately you usually miss something in your original design

• more complex selection algorithms
• current latency of the order of 500 ns, DRS running at 1.6GSPS

• a more complex algorithm (charge instead of pulse height) would lead to a larger latency… 

• Multiple-buffer read-out!
• data stored in circular memories on VME boards

• during a buffer read-out the next buffer is filled (if free…)

• busy released immediately!
• this can be implanted in FPGA in any time… if you have enough resources!

34

Lab. 1 VME bus
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Multiple buffer(0)

35

000

buffer write index

buffer read index

buffer busy

Situation at 
the begin of a 

run

all buffers free

all BUSY at 0

memory stack

Introduction to DAQ 
A. Negri slide 30
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Multiple buffer(1)

36

100

buffer write index

buffer read index

buffer busy

Situation after
the first event

1 buffer full
filling the next 

one
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Multiple buffer(2)

37

110

buffer write index

buffer read index

buffer busy

Another event 
during the first 
buffer read-out
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Multiple buffer(3)

38

010

buffer write index

buffer read index

buffer busy

The first buffer 
read-out 
finished
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Busy handling

• Read-out when one of the buffer busy is 1

• The system is busy when all the 3 buffers are full

39

BUSY0
BUSY1
BUSY2

ALL RAM full --> DAQ in stop

BUSY0
BUSY1
BUSY2

NOT EMPTY RAM --> read out
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And DAQ Live Time?
• The system is busy when all the 3 

buffers are filled during while you 
are reading
• the read out time is unchanged

• ~25ms

• the LiveTime fraction can be 
evaluated 

• it is close to 99% even with a 
trigger rate close to 14 Hz
• there is room to relax the trigger 

condition and improve also the 
trigger efficiency!
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Final DAQ efficiency

41

Algorithm improvement

Multiple buffer read-out
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Conclusions - part 1
• A TDAQ system to be designed on top of an experiment

• the experimental needs drive the choice of the technology

• Even when the technology is decided a lot of compromise, in this case
• Waveform digitiser with lat least 1.6 GSPS sampling speed 

• background rejection requires the best timing possible

• trigger latency to be least than 500 ns

• trigger based FPGA
• system flexibility, for example detector calibration

• calibration procedures may changes during the run… and you do want to be the reason why a new 
calibration procedure will not be used ;) 

• Once your TDAQ is built you have to get the best performance 
• use all the accessible handles 

• this is just an example but can help

• What happens in case of a experiment upgrade?
• let’s study the implications of the upgrade

42
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The MEG II experiment

43

• Number of channels increased by almost a factor of 4
• high density TDAQ to fit in the experimental area

• Doubled beam rate
• trigger rate increased by a factor four (~40 Hz)

• VME read out not not enough to sustain that value
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The MEG II TDAQ: innovative solution
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TDAQ integrated board
• Shaper-amplifier circuit for input signals

• DRS4 in bypass mode to forward 
signals to ADC for trigger
• sampling speed = 100 MHz

• Bandwidth on signals = 50 MHz
• this follow the Nyquist prescription

• Data processing by FPGA
• programmable memory size for 100MHz 

sampled waveforms

• SiPM biasing with dedicated and 
programmable HV regulators 

• Stand alone use through ethernet 
connection and PoE
• 16 channels TDAQ system

• 8Gb/s serial connection to TCB (trigger) 
and 2 Gb/s to DCB (memory read out)

45
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Serial connections

46

2-STAR topology

Gbit/s read out 
links embedded in 

FPGA fabric

trigger board

DAQ board

digitiser boarsdigitiser boars
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R&D on HW: check performance!

47

• OUTPUT memory to send out serial data through the 
cable a then written on INPUT memories

• Synchronised counters to handle memory addresses

• MicroBlaze for memory read out and transmission check
• use of SDK to program and access the CPU

• automatic check over millions of repetitions

• test performed also with other data patterns

CPU

TX SDR 8:1
RX SDR 8:1

RAMs

Transmission check with SDK

Schematic output from
FPGA programming

4 ticks latency
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Improvements with Gbit links!
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• Event read out:
• performed in broadcast from all the 

WDB to the DCB

• full (board) event size ~60kB -> event 
read out in ~1 ms (DRS4 conversion 
time included)
• a factor 25 smaller than in MEG

• the data transmission is not the 
bottleneck until ~1 kHz
• well above the MEGII foreseen rate
• much faster calibrations!

• We moved the bottleneck to storage 
capability…

• we are working then for a second 
level trigger
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The first working crate!
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Step by step 
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R&D on trigger: improve online reconstruction 
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Online time resolution

• From contiguous tile hits
• single channel resolution 

~500ps
• it was 2.5 ns in MEG

• T(e-gamma) resolution 
of  1 ns achievable
• would lead to a reduction 

of 35% of trigger rate 
w.r.t. “MEG configuration”
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Conclusions
• A TDAQ system to be designed on top of an experiment

• the experimental needs drive the choice of the technology

• Even when the technology is decided a lot of compromise, in this case
• Waveform digitiser with lat least 1.6 GSPS sampling speed 

• background rejection requires the best timing possible

• trigger latency to be least than 500 ns

• trigger based FPGA
• system flexibility, for example detector calibration

• calibration procedures may changes during the run… and you do want to be the reason why a new calibration procedure 
will not be used ;) 

• Once your TDAQ is built you have to get the best performance 
• use all the accessible handles 

• this is just an example but can help

• The new TDAQ system for the MEG II experiment
• keep the good features of the previous design and point to the critical points

• Trigger and DAQ merged in one (custom) board

• supported by a concentrating trigger crate

• new serial data transmission scheme to speed up event read out and transmission inside the trigger system

• improve timing algorithm to improve background rejection
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