Introduction to the Design of Full-Custom Front-End \& Data Transmission ASICs*

Table of Contents

- The Big (but Brief) Picture
\rightarrow Briefly front-end - FE
\rightarrow Briefly read-out - RO
\rightarrow Briefly serializer - SER
\rightarrow Briefly phase-lock loop - PLL
- Feed-Back Concept
\rightarrow A qualitative introduction
\rightarrow Natural frequency concept $-\boldsymbol{\omega}_{\boldsymbol{n}}$
\rightarrow Real-world examples:
\rightarrow Binary read-out
- Time-over threshold
\rightarrow Adjusting/optimizing loop behavior
\rightarrow Damping ratio
- Reminder on Detectors
\rightarrow Photodetectors vs photon counters
- Position-sensitive detectors \rightarrow Resistive charge division
- Discrete array of elements
- Time-resolved detection
- Detector Front-End ASICs
\rightarrow Pre-Amp: basic idea $-\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {IN }}$
\rightarrow Transconductance of a transistor - \mathbf{g}_{m}
\rightarrow Evolving a single-stage amplifier into a real-world application
- Processing Technology
\rightarrow Transistor switch - A masterpiece
\rightarrow Lithography
\rightarrow Formation of an nMOS transistor
\rightarrow VLSI design flow
\rightarrow Parasitic extraction
\rightarrow Real-world ASIC examples
- Radiation Tolerance Issues
\rightarrow Definitions:
\rightarrow Single event upset, analog single event transient, latch-up
\rightarrow Simulating radiation effects on analog circuits

[^0]
Motivation for the TOC

Composition within the ISOTDAQ curriculum

- One of the official goals of the school is to "expose the participants to a maximum variety of topics"
- What comes just after the "detector" is the first link of the DAQ chain
- Therefore this lecture will try to deliver:
\rightarrow an intuitive approach to what is listed in the TOC
\rightarrow without providing "dry and ugly" math phrases
- This lecture will have no specific hands-on laboratory session in the current program of the school
\rightarrow However it will always be there at the lowest level of all the laboratory sessions you will attend
- The pages will contain enough amount of text necessary for you NOT to need a lecturer in order to understand the slides at home (naively assuming that you will refer to this lecture in near future)
\rightarrow Therefore please be aware of the above fact, in case you start feeling that the pages are a little bit overloaded

An Ordinary Heavy Ion Collusion

 Heavy ions at the center of ALICE detector; a short movie of 5 ns

The Big (but Brief) Picture

From colliding particles at the interaction point to the generation of meaningful data for analysis "o

Briefly Front-End

First interpretation of detector data

- Integrate the charge as a pulse
- Shape this pulse
1)Compare pulse height to a threshold
\rightarrow Higher ? Yes: No
2)Digitize the pulse for further processing
\rightarrow Digital filters, corrections, etc.

- Send the result to reacl-out

Other channets

The CMAD

Briefly Read-Out

How to get data from FE and deliver to DAQ

- Add headlerlirailer to the data created by the detector FEs
- Combine payload fragments into frames to be transmitted to DAQ

- Receiver
\rightarrow Receive laser light representing serial data from fiber
\rightarrow Check FEC code and correct errors (if possible)
- Parallelize data
\rightarrow Deliver data to the next stage e.g. FE
- Transmitter:
\rightarrow Get data from FE
\rightarrow Calculate FEC and add to frame, increasing resistance against transmission errors
\rightarrow Serialize parallel data
- Drive a laser diode over fiber to DAQ

Briefly SER

Parallel \rightarrow Serial

Operation:

- @ rising edge of $f_{\text {MASTER }}$, load 120-bit-wide frame into input register (40 MHz)

Eye Diagram

- @ rising edge of $f_{\text {BIT/3 }}$, right shift 30-bit-wide words sequentially (1.6 GHz)
a After every shifting, multijplex the right bit to output (4.8 GHz)

Briefly PLL

Phase-lock loop

- Locking a clock to a (pseudo) periodic signal
- ClkPLL is what we we generate locally and RefClk is the reference to be tracked or to be locked to

- Measure the rising instant timing difiference between RefCIk and CIkPLL by the phasefrequency detector (PFD)
\rightarrow Generate correction commands depending on this measurement (Up, Down)
- Correction commands control the charge pump (Icp) pumping/sinking current into/from the filter capacitor, varying the control voltage for the Voltage Controlled Oscillator (VCO)
\rightarrow Gradually, the timing error of the two signals at the inputs of the PFD would vanish (ideal locked condition)

[^1]
Introduction to the Design of Full-Custom Front-End \& Data Transmission ASICs*

Table of Contents

- The Big (but Brief) Picture
\rightarrow Briefly front-end - FE
\rightarrow Briefly read-out - RO
\rightarrow Briefly serializer - SER
- Briefly phase-lock loop - PLL
- Feed-Back Concept
\rightarrow A qualitative introduction
\rightarrow Natural frequency concept $-\boldsymbol{\omega}_{\boldsymbol{n}}$
- Real-world examples:
\rightarrow Binary read-out
- Time-over threshold
\rightarrow Adjusting/optimizing loop behavior
\rightarrow Damping ratio
- Reminder on Detectors
\rightarrow Photodetectors vs photon counters
- Position-sensitive detectors \rightarrow Resistive charge division
- Discrete array of elements
\rightarrow Time-resolved detection
- Detector Front-End ASICs
\rightarrow Pre-Amp: basic idea $-\mathbf{V}_{\text {out }} / \mathrm{V}_{\text {IN }}$
\rightarrow Transconductance of a transistor - \mathbf{g}_{m}
\rightarrow Evolving a single-stage amplifier into a real-world application
- Processing Technology
\rightarrow Transistor switch - A masterpiece
\rightarrow Lithography
\rightarrow Formation of an nMOS transistor
\rightarrow VLSI design flow
\rightarrow Parasitic extraction
\rightarrow Real-world ASIC examples
- Radiation Tolerance Issues
\rightarrow Definitions:
- Single event upset, analog single event transient, latch-up
\rightarrow Simulating radiation effects on analog circuits

[^2]
Feed-Back

Actually a very familiar concept from daily life

- Aim, is decreasing the difference (the error signal) between the reference and the outputt
- How ? For each cycle:
\rightarrow A portion of the output is fed-back. Make the system be sensitive to a portion of what it outputs
- Measure the difference between the reference and what is fed-back (only a portion of the output)
\rightarrow Depending on the difference, an error signal is generated which in turn causes a correction step to be taken controlling the system under control
\rightarrow Repeat the cycle

Feed-Back

 Actually a very familiarconcept from daily life

- Whistling or playing an instrument?
\rightarrow How do I know what I play is "Do" but not "Re"?
\rightarrow Does it make sense to say "I whistle better than you"?
\rightarrow What happens when I try to find the right guitar solo for an existing song?
- Drinking a glass of water ?
\rightarrow Acljust the angle \& position of the glass accordingly to keep the water flow as it is necessary?
\rightarrow Remember the childhood: sometimes the water gets dropped to the ground accidentally (What is the failure mechanism ?)
- Walking and biking?
\rightarrow How do I clecidle the frequency of my steps not to fall down or to be able to reach somewhere?
\rightarrow What about walking or biking when drunk? (What is the failure mechanism ?)
- Ruling a country?
\rightarrow Can "referendum" be a term borrowed from the control theory ?
\rightarrow How come politicians of the same ideology can decide in substantially different manners? < Questionably ignoring corruption :D >

Feed-Back

Natural frequency concept

- An imaginary system answering questions asked continuously
- Plot (both logarithmic scale) the success level within a certain time window as a function of frequency of questions asked (transfer function)
- If the questions are asked slow enough, the system answers all, thus 100\% success level
- Once the questions start to be asked faster, the system starts failing answering all, thus transfer function begins going down
- Corner is at the natural frequency of the control loop where the system starts impairing significantly

Feed-Back

Choosing for what to be sensitive

- LOW $\omega_{n} \rightarrow$ Sense slow variations
\rightarrow Loop acts on slowly varying signals
\rightarrow Narrow bandwidth - slow loop
- High $\omega_{n} \rightarrow$ Sense fast variations
\rightarrow Loop acts on rapidlly varying signals
\rightarrow Wide bandwidth - fast loop

Example
 Binary read-out

- Requires stable base-line
\rightarrow Which varies slowly
\rightarrow A narrow loop bandwidth is needed (Loop 2)
- Requires a fast signal shaper
\rightarrow Which varies rapidly
\rightarrow A wicle bandwidth is
 needed (Loop 1)

Real-World Example

Binary read-out for time-over threshold measurement

- Random detector pulses with a. fow MHz frequency; then...
\rightarrow How fast is the fast loop?
- How slow is the slow loop?
- Depending on the read-out speed and the operating environment, parameters are optimized
\rightarrow Natural frequencies and gains of the loops, rise/fall-times, etc.
- Settling behavior, radiation tolerance, damping ratio, power, etc.
- Circuit footprint, robustness, redundancy, channel efficiency, etc.

Feed-Back

Optimizing the loop behavior

Simulation Movie Quiz

Remember the PLL

- Slow down the VCO, if it is too fast with respect to the reference
- Speed up the VCO, if it is too slow with respect to the reference

Simulation Movie Quiz

Different loop behaviors

- See the movies and associate the behavior to the poles on the s-plane (complex plane)

- Use your intuition

? - Fast-loop with high damping ratio (noiseless environment)
? - Slow-loop with low damping ratio (noisy environment)

Simulation Movie Quiz

Different loop behaviors

- See the movies and associate the behavior to the poles on the s-plane (complex plane)

- Use your inntuition

B - Slow-loop with low damping ratio (noiseless/perfect environment)
\square
? - Fast-loop with high damping ratio (noiseless environment)

? - Slow-loop with low damping ratio (noisy environment)

Simulation Movie Quiz

Different loop behaviors

- See the movies and associate the behavior to the poles on the s-plane (complex plane)

- Use your intuition

B - Slow-loop with low damping ratio (noiseless/perfect environment)

A - Fast-loop with high damping ratio (noiseless environment)
\square
? - Slow-loop with low damping ratio (noisy environment)

Back to the big picture

If the PLL fails, then nothing works !..

- In case the loop parametrization is wrong:
\rightarrow PLL can not deliver a proper clock
\rightarrow No phase/frequency locked CIkPLL signal
\rightarrow Ignored LHC clock, no synchronization
- SER fails
\rightarrow Some of the bits get lost or duplicated
\rightarrow High jitter leading to closed eye diagram
\rightarrow RO fails delivering the data from FE to DAQ
\rightarrow No DAQ \rightarrow Fatal error !..

Introduction to the Design of Full-Custom Front-End \& Data Transmission ASICs*

Table of Contents

- The Big (but Brief) Picture
\rightarrow Briefly front-end - FE
\rightarrow Briefly read-out - RO
\rightarrow Briefly serializer - SER
\rightarrow Briefly phase-lock loop - PLL
- Feed-Back Concept
\rightarrow A qualitative introduction
\rightarrow Natural frequency concept - $\boldsymbol{\omega}_{\boldsymbol{n}}$
\rightarrow Real-world examples:
\rightarrow Binary read-out
- Time-over threshold
\rightarrow Adjusting/optimizing loop bekavior \rightarrow Damping ratio
- Reminder on Detectors
\rightarrow Photodetectors vs photon counters
- Position-sensitive detectors \rightarrow Resistive charge division
- Discrete array of elements
\rightarrow Time-resolved detection
- Detector Front-End ASICs
\rightarrow Pre-Amp: basic idea $-\mathbf{V}_{\text {out }} / \mathbf{V}_{\text {IN }}$
\rightarrow Transconductance of a transistor - \mathbf{g}_{m}
\rightarrow Evolving a single-stage amplifier into a real-world application
- Processing Technology
\rightarrow Transistor switch - A masterpiece
\rightarrow Lithography
\rightarrow Formation of an nMOS transistor
\rightarrow VLSI design flow
\rightarrow Parasitic extraction
\rightarrow Real-world ASIC examples
- Radiation Tolerance Issues
\rightarrow Definitions:
- Single event upset, analog single event transient, latch-up
\rightarrow Simulating radiation effects on analog circuits

[^3]
An Example

Pilatus System: A hybrid of "sensor + electronics"

a "The development at PSI is driven by the design of the pixel detector for the CMS (Compact Muon Solenoid) experiment at the planned Large Hadron Collider (LHC) at CERN." (Ref: http://pilatus.web.psi.ch/publications.htm)

- Hybrid: fully depleted derector sitting on top of the front end electronics, reading out the detector, integrated within each of the pixels
a Composed of the detector, charge-sensitive preamplifier, shaper, comparator and counter

Crowd vs Counted Individuals

First interaction with the photons (and/or particles)

- Impossible to cover all
\rightarrow There are many types and even many more examples of particle detectors
a Therefore limited
- Just a few types and examples should be enough, given the limited time
a "Seeing" the photons \rightarrow photorletector != photon counter
\rightarrow Photo-detectors: generate an analog level (i.e. Ior \boldsymbol{V}) as a function of "light" intensity (e.g. PN and PIN structures)
- Photon counters: count individual bursts of photon bundles or single photons (e.g. PMTs and avalanche diocles)

First interaction with the photons (and/or particles)
\rightarrow Photo-detectors: generate an analog level (i.e. Ior \boldsymbol{V}) as a function of "light" intensity (e.g. PN and PIN structures)
\rightarrow Two modes of operation:

Photo-voltaic mode

Photo-conductive mode
\rightarrow Responsivity ($\boldsymbol{U} \boldsymbol{P}_{\text {optic }}$)

- Active area
- Max photo current (limited by saturation)
- Dark current (in photoconductive mode)
- Bandwidth (rise, fall times)
- ...
- ...

Gowd-vs Counted Individuals

First interaction with the photons (and/or particles)
\rightarrow Photon counters: count individual bursts of photon bundles or single photons (e.g. PMTs and avalanche diodes or SPADs)
\rightarrow Photomultipliers: if photons arrive at the detector with low-enough frequency

- Single Photon Avalanche Diodes (AD): PN junctions under strong reverse-bias

Photo-voltaic mode

$A D$

Gowdivs Counted Individuals

First interaction with the photons (and/or particles)
\rightarrow Photon counters: count individual bursts of photon bundles or single photons (e.g. PMTs and avalanche diodes or SPADs)

- Avalanche Diodes (AD) are PN junctions reverse-biassed just below the break-down voltage such that single-photon induced electrons are accelerated within a few $\boldsymbol{\mu} \mathrm{ms}$

- Single-Photon Avalanche Diodes (SPAD) are PN junctions reverse-biassed just above the break-down voltage. When a photon strikes, bias voltage is droped down below the threshold (but not to break-down) for a short time (e.g. 100 ns) by carefully designed electronics to recover, such that the detector is ready for the next detection
\rightarrow SPADs can also be used for time-resolved techniques as they can provide information on photons time of arrival in addition

Position Sensitive Architecture

First interaction with the photons (and/or particles)

- Detect particles with the sensitivity of where they land; two main paradigms:
\rightarrow Resistive charge division on a single detection element:

F.7. 10.14. Layout of a one-dimenthonal cenkinuous position-sensitive detector using tesistive charge division. A simplified equivalent circuic is thown below
- From Leo, p. 227

Position $=\frac{B}{C}$

A hybrid: Discrete array of resistive charge division
\rightarrow Discrete array of individual detection elements:

Fig. 10.15. Layout of a two-dimensional matrix detector. To reduce the readout electronics, the eloctrodes may be connected to an external resistive divider [from Gerber et al:: IEEE Trans. Nucl. Sei NS-24, No. 1, 182 (1977)]
*From Leo, p. 229

MEDIPIX

Fig. 1: Ideal repeating cell of general purpose two-electrode fabric construction: green yarns are conductive, yellow yarn is isolating binder, red yarns are isolators

Fig. 2: Ideal repeating cell of general purpose three-electrode fabric construction: green yarns are conductive, yellow yarns are isolating binders, red yarns are isolators

Time Resolved Architecture

Flash the sample, start a timer, acquire single photons and their arrival times

A 128128 Single-Photon Image Sensor, With Column-Level 10-Bit Time-to-Digital Converter Array IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 12 , DECEMBER 2008

(b)

- Like an ordinary pixel detector (e.g. CCD)
a However measures "time" instead of "color" (e.g. TPC)
- Generates 3D and color-less images

Time Correlated Architecture
 First interaction with the photons (and/or particles)

a Measuring the profile of a fast (e.g. fluorescence, from ps to ns) and/or weak decay is tricky
a Recovering not only the lifetimes but also the decay shape requires the decay to be represented by at least 10 s of samples

- The idea:
\rightarrow Meet the single photon counting condition(?)
\rightarrow Make your detector fast
- Decrease the number of photon creation at the source
\rightarrow Excite the system to be probed (e.g. via a laser)
- Count photons per reference excitation
- Fill a histogram to visualize decay profile

Introduction to the Design of Full-Custom Front-End \& Data Transmission ASICs*

Table of Contents

- The Big (but Brief) Picture
\rightarrow Briefly front-end - FE
\rightarrow Briefly read-out - RO
\rightarrow Briefly serializer - SER
\rightarrow Briefly phase-lock loop - PLL
- Feed-Back Concept
\rightarrow A qualitative introduction
\rightarrow Natural frequency concept $-\boldsymbol{\omega}_{\boldsymbol{n}}$
\rightarrow Real-world examples:
\rightarrow Binary read-out
- Time-over threshold
\rightarrow Adjusting/optimizing loop behavior
\rightarrow Damping ratio
- Reminder on Detectors
\rightarrow Photodetectors vs photon counters
- Position-sensitive detectors \rightarrow Resistive charge division
- Discrete array of elements
- Time-resolved detection
- Detector Front-End ASICs
\rightarrow Pre-Amp: basic idea $-\mathrm{V}_{\text {out }} / \mathrm{V}_{\mathrm{IN}}$
\rightarrow Transconductance of a transistor $-\mathbf{g}_{\mathrm{m}}$
\rightarrow Evolving a single-stage amplifier into a real-world application
- Processing Technology
\rightarrow Transistor switch - A masterpiece
\rightarrow Lithography
\Rightarrow Formation of an nMOS transistor
\rightarrow VLSI design flow
\rightarrow Parasitic extraction
\rightarrow Real-world ASIC examples
- Radiation Tolerance Issues
\rightarrow Definitions:
\rightarrow Single event upset, analog single event transient, latch-up
\rightarrow Simulating radiation effects on analog circuits

[^4]
Pre-Amplifier

The first stage of the interpretation

- Standardized experimental techniques over time

$$
T=\frac{V_{\text {OUT }}}{V_{I N}}=\frac{A}{1+A B}
$$

- Our discussion on intuitive \& descriptive level
- Three types of pre-amplifiers:
\rightarrow Voltage sensitive: usually not preferred due to the fact that, for a given amount of charge generated by the detector $\left(\mathrm{Q}_{\mathrm{DET}}\right)$, the output voltage of the detector (V) is a function of the effective capacitance ($C_{\text {EFF }}$) of the detector which is variable
\rightarrow Current sensitive: not preferred because they are suitable to be used with لow impedance devices, however radiation oletectors have usually high impeclance
- Charge sensitive: preferred type because its output is only a function of the charge $\left(\mathrm{Q}_{\mathrm{DET}}\right)$ and a fixed C_{F}, provided that amplifier gain is sufficiently high

[^5]
Amplifier Basic

 How to amplify something- We want a small change in the input to cause a big change at the output
\rightarrow The reason it is called an amplifier
a However in a real circuit, the input signal dies out, therefore:
\rightarrow Output signal is a re-generated larger "clone"
\rightarrow Output can have other features that the input did not

-

Rotatable support point

Light-weight stick

Transconductance $-g_{m}$

Figure-or-merit for a transistor

- Define a figure-of-merit (FOM) for a single nMOS
\rightarrow How well a transistor converts voltage into current
\rightarrow From input $\mathbf{V}_{\text {GS }}$ to output $\mathbf{I}_{\mathbf{D S}}$

$$
g_{m}=\frac{d I_{D S}}{d V_{G S}}=\frac{2 I_{D}}{V_{G S}-V_{T H}}
$$

[^6]
Basic CMOS Amplifier

Single-stage common-source amplifier and its evolution into a complete circuit

- Sink current through $\boldsymbol{R}_{\boldsymbol{D}}$

\rightarrow As in increases, out decreases (faster)
- $\boldsymbol{g}_{m} \boldsymbol{R}_{\boldsymbol{D}}$ suggests that we should increase the load impedance to have higher voltage gain
\rightarrow An icleal current source has infinitite impedance
- A current mirror is a practical current source \rightarrow Simply a transistor biased as a current source
- Transconductance $\left(\boldsymbol{g}_{m}\right)$ increases with current
\rightarrow Supply acdditional current to the gain device to have higher gain

$A_{v}=-g_{m} R_{D}$
Common-source amplifier

$A_{v}=-g_{m} r_{0}$
Commonisource ampliffer

$A_{v}=-g_{\mathrm{m}}\left(r_{\text {of }} \| r_{\mathrm{o} 2}\right)$
Common-source amplifier

$A_{v}>-g_{m}\left(r_{o d} \| r_{o z}\right)$
Common-source amplifier with current source load featuring higher gain due to increased current

Basic CMOS Amplifier

Single-stage common-source amplifier and its evolution into a complete circuit

- Add the feedback network $\boldsymbol{C}_{\boldsymbol{F}} \& \boldsymbol{R}_{\boldsymbol{F}}$ forming the \boldsymbol{B} such that
\rightarrow For high enough $\boldsymbol{A}_{\boldsymbol{v}}$, closed loop gain is $\mathbf{1} / \mathbf{B}$

$$
T=\frac{V_{O U T}}{V_{I N}}=\frac{A}{1+A B} \quad \begin{aligned}
& \text { sage: } T(A, B)=A /(1+A * B) \\
& \text { sage: } T . \text { limit }(A=\text { infinity }) \\
& (A, B) \mid-->1 / B
\end{aligned}
$$

Full circuit whth

Basic CMOS Amplifier

Avoid loading effect of the resetting resistor

- Problem: while $\boldsymbol{C}_{\boldsymbol{F}}$ is charged, $\boldsymbol{R}_{\boldsymbol{F}}$ resets at the same time
\rightarrow Lowering the voltage gain, therefore:
\rightarrow Loading effect of the feedback resistor should be avoided
\rightarrow Integration and resetting should be decoupled
\rightarrow Employing a busfier is one of the possible solutions

Fulf croult with feedback network

Fulf circuit avoiding
resistor loading effect

Pre-Amplifier

Full circuit (currently in use at a RICH detector)

- Actival CMOS device-level
 implementation of a CSA
$V_{\mathrm{DD}}=3.3 \mathrm{~V}$

Differential Amplifier

Generating less noise (also for others) in the cost of more complex design

 circuitry sharing the

Table in analogy
to circuit substrate

Gain of the system: mechanic amplifier

Rotational support axis holding both the sticks

 Gain= -Sizeof \{ \} Sizeof \{ \} \}

Stick 1

Differential Signaling
 Rejecting noise

- The information Tx generates is in the clifference

\rightarrow Signal creates complementary current images on the substrate
\rightarrow Generating less noise for neighboring circuitry
- Rx compares the voltage levels of the pair
- Any noise source should affect both of the lines similarly
\rightarrow Generating almost iclentical transients on both of the wires
\rightarrow Pair wires are close to each other
- Practically high noise rejection is feasible

Differential signal

Noise source (lonizing particle passage, electronic noise injected by neighboring circuitry, etc.)

Differential Signaling
 Differential gain stage

- Sink current through $\boldsymbol{R}_{\boldsymbol{D}}$
\rightarrow As in increases, out decreases (faster)
- Double the structure to act on both the signals
\rightarrow Drawback: signals can be identical (no differential information)
- Steer the current either through one inverter or the other
\rightarrow Transition at the input changes the path through which the current is steered
\rightarrow Unless metastable, the amplifier has always differential information at he output

* Please refer to Design of Analog CMOS Integrated Circuits by B. Razavi

Introduction to the Design of Full-Custom Front-End \& Data Transmission ASICs*

Table of Contents

- The Big (but Brief) Picture
\rightarrow Briefly front-end - FE
- Briefly read-out - RO
\rightarrow Briefly serializer - SER
\rightarrow Briefly phase-lock loop - PLL
- Detector Front-End ASICs
\rightarrow Pre-Amp: basic idea $-\mathbf{V}_{\text {out }} / \mathrm{V}_{\text {IN }}$
\rightarrow Transconductance of a transistor - \mathbf{g}_{m}
\rightarrow Evolving a single-stage amplifier into a real-world application
- Processing Technology
\rightarrow Transistor switch - A masterpiece
\rightarrow Lithography
\Rightarrow Formation of an nMOS transistor
\rightarrow VLSI design flow
\rightarrow Parasitic extraction
\rightarrow Real-world ASIC examples
- Radiation Tolerance Issues
\rightarrow Definitions:
- Single event upset, analog single event transient, latch-up
\rightarrow Simulating radiation effects on analog circuits

[^7]
Semiconductor Switch - Transistor

A masterpiece

- Current conduction between Drain-Source as a function of Gate-Source voltage

A single MOS transistor as drawn by a designer

Lithography

The art of light drawing

- A real microelectronic circuit is like a city composed of many layers
- A specific lithographic mask is needed for each layer to be created
- As an example we will create a "line" on an oxicle layer

Initial state

Target

The ingot to be sliced into wafers

* Please refer to Semiconductor Devices: Physics and Technology by S. M. Sze

Just to draw a single line

Seven simplified steps

A
B
C
D

Fabrication of an nMOS

Simplified steps - Part I

A. Definition of active area

C. Channel implant

B. Anneal and field oxide growth

D. Gatc formation (polysilicon deposition)

Fabrication of an nMOS

Simplified steps - Part II

- Spacer \& active field formation
- Dep. of SiO_{2}
- Etching contact holes
- Metal dep.
E. Spacer formation and S/D implant

G. Contact hole etch

F. Oxide deposition

H. Metal deposition

How many layers do you see ?

A process repeated a few hundred times

How many layers do you see ?

A process repeated a few hundred times

The CAMD front-end ASIC designed for RICH-I detector of COMPASS experiment at CERN. (350 nm CMOS).

How many layers do you see ?

A process repeated a few hundred times

The first prototype of the SER-DES ASIC for the GBT13 chip-set under development for the Super-LHC at CERN. (130 nm CMOS)

VLSI Design in Practice

Daily life of an ASIC designer

- Interface between process scientist and designer
- Focus on reliability and increased manufacturability

Contact		
5.1	Exact contact sine	2λ
5.2	Min. poly overisp	1.51
5.3	Min. spacing	2λ
5.4	Min, spacing to gate	2λ
6.1	Exact contact sire	2λ
6.2	Min. astive overlap	1.5A
6.3	Min. spacing	2λ
6.4	Min. spacing to gate	21
Metal 1		
7.1	Min. width	3 A
7.2.3	Min. spacing	31
7.3	Min. overlap of any contact	14
Vial		
8.1	Exact size	2λ
8.2	Min. spacing	3λ
8.3	Min. overlap by metal 1	1λ
8.4	Min. spacing to contast	2λ
8.5	Min. spac. to poly or act. edpe	2λ
Metal2		
9.1	Min. width	3λ
9.2 a	Min. spacing	4λ
9.3	Min. overlap to vial	1λ

Contact
5.1 Exact contact size
5.2 Min. poly overl.ap
5.3 Min . spacing
5.4 Mia spacing to gate
2λ
2λ
6.1 Exact contact sise
6.2 Min. active overlap
6.3 Min. spacing

4 Min. spacing to gate

Metal 1
7.1 Min. width
7.2 a Min. spacing
7.3 Min. overlap of any contact
1λ
ral
re
821 Min spacine
8.4 Min spacing in contel
8.5 Min. spac. to poly or act. odge
$\stackrel{\sim}{>} \rightleftharpoons \ggg$

3 λ
9.2 a Min. spacing
9.3 Min. overlap to vial
(*) Not Drawn

Architectural Choice

Quantitative comparison between different approaches

- A 10-Bit current-mode D/A converter
- Two possible architectures; have to choose one
- Need for qualitative comparison: MC is a must

Binary weighted (BWA)

Thermometer coded (TCA)

Silfsulations
Schersetic entisy

Lenyout

Desigh rule C'fects

Palresitic Extretion

Lenyout Versus
schersentic chects

Posti-LEyout Sinsulaitons

Parametrization

Optimizing the choice according to the application

- Hand calculations
- Corresponding time \& frequency domain behavior
- Judgment

Schematic-Level Design

- Place devices
- Connect ports
- Build a hierarchy

Simulation

- Model-based time-step simulations (HDLs, MatLab, Octave, Cadence, etc.)
- Transistor-level SPICE simulations (Spectre, UltraSim, etc.)
- Racliation simulations (Process simulators, Spectre, etc.)
- Very noisy VCO + very noisy reference
- Initially not locked
- Reference frequency step of 10% some time after locking
- Low bandwidth CP-PLL filters out the noise at the referench
 input (i.e. slow loop)
- Effect of damping factor for
0.3 and 1.0

Red: Period of $\mathrm{VCO}+\% \mathrm{~N}$
BLack: Reference period 200 ps (p-p) jitter
lopas hinet Supgeswine

Layout

- Lithographic masks are designed
- Actual representation of a circuit on the diee

Schersetic entisy

Desigjs rude C'neck

Pelresitic Extcoction

Leyyout Versus Sc'fersietic ct'lects

DRC

* Infinite different paths of matching what the schematic represent (art)

Parasitic Extraction

For a better physical representation of what is in the circuit

- Perform two simple connections:
\rightarrow Connect the pin \mathbf{A} to pin \boldsymbol{B} with metal-1
\rightarrow Connect the pin \boldsymbol{C} to pin \boldsymbol{D} with metal-2
- Designer clicl not drawy any device but the effective circuit has at least the followings:
- 4 capacitors
$\rightarrow 2$ resistors
$\rightarrow 1$ inductor
 schematic are the parasitic devices that can not be avoidled but minimized/maximized
\rightarrow e.g. minimize input capacitance of a FE or wire capacitances between building blocks
\rightarrow e.g. maximize narrow-band PLL filter capacitance or de-coupling capacitors of any ASIC

D

Introduction to the Design of Full-Custom Front-End \& Data Transmission ASICs*

Table of Contents

- The Big (but Brief) Picture
\rightarrow Briefly front-end - FE
- Briefly read-out - RO
\rightarrow Briefly serializer - SER
\rightarrow Briefly phase-lock loop - PLL
- Feedl-Back Concept
\rightarrow A qualitative introduction
\rightarrow Natural frequency concept - $\boldsymbol{\omega}_{\boldsymbol{n}}$
\rightarrow Real-world examples:
\rightarrow Binary read-out
- Time-over threshold
\rightarrow Adjusting/optimizing loop behavior
\rightarrow Damping ratio
- Reminder on Detectors
\rightarrow Photodetectors vs photon counters
- Position-sensitive detectors \rightarrow Resistive charge division
- Discrete array of elements
\rightarrow Time-resolved detection
- Detector Front-End ASICs
\rightarrow Pre-Amp: basic idea $-\mathbf{V}_{\text {out }} / \mathrm{V}_{\text {IN }}$
\rightarrow Transconductance of a transistor - \mathbf{g}_{m}
\rightarrow Evolving a single-stage amplifier into a real-world application
- Processing Technology
\rightarrow Transistor switch - A masterpiece
\rightarrow Lithography
\rightarrow Formation of an nMOS transistor
\rightarrow VLSI design flow
\rightarrow Parasitic extraction
\rightarrow Real-world ASIC examples
- Radiation Tolerance Issues
\rightarrow Definitions:
- Single event upset, analog single event transient, latch-up
\rightarrow Simulating radiation effects on analog circuits

[^8]
Radiation Issues

Definitions and failure mechanism

- Single Event Transient (SET)
\rightarrow A transient perturbation on an analog signal due to charge released by an ionizing radiation.
- Single Event Upset (SEU)
\rightarrow State change of a digital circuit due to charge released by an ionizing radiation.

vertical PNF
Wafer cross-section of the inverter

Modeling Radiation Effects

Taking radiation into account in simulations

- Radiation = current pulse
\rightarrow E.g.: 0.3 pC in 130 nm CMOS
- Plot: Effect vs Q
\rightarrow Define/check specifications
\rightarrow Repeat the cycle

,

Rad-Hard Design Tricks

Adding robustness to circuits

- Use higher current levels and/or larger devices
\rightarrow The current/voltage excursions ionizing particles generate stay insignificant
\rightarrow Prise to pay: increased circuit footprint and power dissipation, slower operation, etc.
- Use triple-well and/or guard-ring structures frequently
\rightarrow To ground any noise before it reaches to sensitive circuitry
- Use Modular Redundancy (nMR)
\rightarrow Replicate circuitry and vote at the output, Triple Modular Redundancy (TMR) is commonly used
\rightarrow The probability for an ionizing particle to affect all the three blocks at the same time is very low, therefore this technique is commonly used
 to harden designs against SEU
- Use dummy states to protect Finite State Machines (FSM) against SEUs
\rightarrow If a state change occurs due to an ionizing particle passage, the FSM can return to a valid state without impairing
\rightarrow Prise to pay: more complex FSM design, increased power dissipation and circuit footprint
a Place the ASICs within magnet shadows (where applicable)
\rightarrow To decrease radiation tolerance requirements

Introduction to the Design of Full-Custom Front-End \& Data Transmission ASICs*

Table of Contents

- The Big (but Brief) Picture
\rightarrow Briefly front-end - FE
- Briefly read-out - RO
\rightarrow Briefly serializer - SER
\rightarrow Briefly phase-lock loop - PLL
- Feedl-Back Concept
\rightarrow A qualitative introduction
\rightarrow Natural frequency concept - $\boldsymbol{\omega}_{\boldsymbol{n}}$
\rightarrow Real-world examples:
\rightarrow Binary read-out
- Time-over threshold
\rightarrow Adjusting/optimizing loop behavior
\rightarrow Damping ratio
- Reminder on Detectors
\rightarrow Photodetectors vs photon counters
- Position-sensitive detectors \rightarrow Resistive charge division
- Discrete array of elements
\rightarrow Time-resolved detection
- Detector Front-End ASICs
\rightarrow Pre-Amp: basic idea $-\mathbf{V}_{\text {out }} / \mathrm{V}_{\text {IN }}$
\rightarrow Transconductance of a transistor - \mathbf{g}_{m}
\rightarrow Evolving a single-stage amplifier into a real-world application
- Processing Technology
\rightarrow Transistor switch - A masterpiece
\rightarrow Lithography
\rightarrow Formation of an nMOS transistor
\rightarrow VLSI design flow
\rightarrow Parasitic extraction
\rightarrow Real-world ASIC examples
- Radiation Tolerance Issues
\rightarrow Definitions:
- Single event upset, analog single event transient, latch-up
\rightarrow Simulating radiation effects on analog circuits

[^9]
[^0]: * Application Specific Integrated Circuit

[^1]: * Please refer to Phaselock Techniques by F. M. Gardner

[^2]: * Application Specific Integrated Circuit

[^3]: * Application Specific Integrated Circuit

[^4]: * Application Specific Integrated Circuit

[^5]: * Please refer to Techniques for Nuclear and Particle Physics Experiments: A How-to Approach by W. R. Leo

[^6]: * Please refer to Design of Analog CMOS Integrated Circuits by B. Razavi

[^7]: * Application Specific Integrated Circuit

[^8]: * Application Specific Integrated Circuit

[^9]: * Application Specific Integrated Circuit

