
Practical aspects of computer
architectures for data acquisitions:

computing platforms

Pawel Szostek, Niko Neufeld
ISOTDAQ, 01.02.2016

1

CERN openlab
LHCb

Content of this presentation
In this lecture I will talk about:

➔ key concepts in computer
architectures,

➔ bird’s eye view evolution of the
silicon technology

➔ seven performance dimensions of
modern computing platforms,

➔ how fast computers are,

➔ useful tools for running stuff,

What I will not talk about

➔ Memory Management Unit,

➔ Cache associativity,

➔ PCIe architecture (see Paolo’s
talk),

➔ FPGAs (see Hannes’ and Manoel’s
talks),

➔ ASICs,
2

3

Part 1: Basic concepts in the computer architecture

Im
a

g
e

 s
o

u
rc

e
:
w

w
w

.d
iq

u
a

e
d

ila
.i
t

Computers are already 70 years old...
but it’s still von Neumann’s idea!*
➔there is an execution unit,
➔there is a memory,
➔they communicate over buses
➔program counter keeps tracks of

the execution
➔registers store operands of ALU

operations
➔ALU does the proper

computation

4

* with a few improvements

Computers are already 70 years old...
but it’s still von Neumann’s idea!*
➔there is an execution unit,
➔there is a memory,
➔they communicate over buses
➔program counter keeps tracks of

the execution
➔registers store operands of ALU

operations
➔ALU does the proper

computation

5

* with a few improvements

This lecture is mostly about the improvements

Moore’s law
Probably you hear that
for the 34th time in the
past 7 days, but…

6

➔Number of transistors in
CPUs is growing
exponentially

➔Clock frequencies don’t
grow anymore

➔New transistors are
invested into more and
bigger cores

Multiplicative dimensions of parallelism

7Why should we care?

(Pipelining is
omitted on
purpose)

A
d

a
p

te
d

 f
ro

m
 A

.N
o

w
a

k

(superscalar)

8

That’s why. Period.

Era of Pentium 4 is over
➔Nowadays processors have

more than one core,
➔Cores are connected by an

interconnect (a.k.a. uncore),
➔They share LLC, e.g. one

core can use in this case
12*2.5MB of cache,

➔Note: QPI, PCIe attached to
the cores 0-7

9

Im
a

g
e

 s
o

u
rc

e
:
In

te
l

Superscalar architecture - Haswell

Im
a

g
e

 s
o

u
rc

e
:
In

te
l

10

Simultaneous Multi-threading

11

Normal situation:
no SMT, one
instruction stream

SMT enabled: two
instruction streams
sharing some
hardware resources

Vector instructions
Scalar addition

➔A long register is involved, but only a
fraction of it is used

12

Vector addition

➔same latency as the scalar
counterpart

➔4 times higher throughput

13

Part 1.1: Memory architecture

im
a

g
e

 s
o

u
rc

e
:
w

w
w

.i
n

it
ia

ti
v
e

c
o

lt
d

.c
o

m

http://www.initiativecoltd.com/catalog.php?page=10306

What changed since the 70’s?

14

Our problem is

growing.

(Short) interlude: memory != memory

15

SRAM DRAM
Which technology is faster? And why SRAM?

How to speed up the memory?
Problem: fast memory is expensive
Solution: introduce memory hierarchy, with a fast memory on the
top

and slow on the bottom

16

Cache loads: hit

17

Cache loads: miss

Macroscopic effect: your code goes terribly slow

18

Food for thought: the big picture

19

Memory bandwidth consequences
(you remember our growing problem?)
➔Theoretical peak memory bandwidth: the maximum amount of data

that can be read in a unit of time.
bandwidthpeak= channels x bus width x frequency

➔therefore for a real memory we get (NVIDIA Tesla K40)
bandwidthpeak= 2 x 384/8 (bytes) x 3GHz = 288 GB/s
288 GB is equivalent to 36G doubles

➔K40’s throughput is 1400GFLOPS (double)
➔To achieve peak performance we need 1400/36 = 39 operations per double In

s
p

ir
a

ti
o

n
:
V

in
c
e

n
z
o

 I
n

n
o

c
e
n

te

20

Part 2: Computing landscape - a view from 10,000 meters
21

Typical machine in your computing farm

22

➔dual socket Intel* platform,
➔6-8 cores per socket, twice as much with hyperthreading,
➔2.4 GHz main clock frequency,
➔256 bits vectors, AVX/AVX2 ISA,
➔5-8 superscalar execution units, 4-way dispatch,
➔64GB of main memory,
➔4 memory channels (DDR3, DDR4),
➔1x SSD or 2x SSD with LVM striping,

* sorry AMD, but this is the truth

High performance vs. low power solutions
➔ power dissipation is a major problem in the

datacenter
➔ power envelopes of the CPUs available for

data centers span from 5W to 140W,
➔ high-power units usually are delivered with

high core counts and wider cores
➔ HEP software doesn’t necessarily profit

from all these goodies
➔ so far no spectacular victories

23
image source: David Abdurachmanov

Coprocessors
➔Intel’s response to GPGPU
➔PCIe card with ~60 lightweight

cores on it
➔16GB on-board memory
➔both native and off-load execution
➔nowadays rather exotic, but the

next generation might be a game
changer (~1 year from now)

24

Im
a

g
e

 s
o

u
rc

e
:
In

te
l

GPGPUs

25
GPUs can execute massively parallel code with simple control flow.

Part 3: How fast
are computers?

26

Latencies every programmer should (roughly) know
Access type cycles nanoseconds

L1 cache reference 4 2

L2 cache reference 12 6

L3 cache reference 44 22

Main memory reference 300 150

Read 1MB sequentially from an SSD 500,000 1,000,000

HDD seek 5,000,000 10,000,000

CERN-SLAC-CERN round-trip oh well... 150,000,000

S
o

u
rc

e
:
o

w
n

 m
e

a
s
u

re
m

e
n
ts

,
In

te
l

27

Performance optimization checklist
Level Possible

gains

Factor Means

Algorithm Huge 10x..1000x and more Changing complexity,

(parallelizing)

Source code Medium 1x-10x Data layout, memory accesses,

data reuse, vectorization

Compiler Medium or

Low

1.5x Tweaking compilation flags,

(changing the compiler)

Operating

system

Low 1.3x Upgrading the kernel and glibc

runtime

Hardware Medium 10% between two

consecutive

microarchitectures

Moving to a newer

microarchitecture (e.g. Ivy

Bridge -> Haswell) In
s
p

ir
a

ti
o

n
:
A

.
N

o
w

a
k
 “

U
n

d
e

rs
ta

n
d

in
g
 p

e
rf

o
rm

a
n

c
e
 t
u

n
in

g
”

28

Riddle #1: Simple loop iterations
// Number to guess: How many iterations of
// this loop can we do in one second?
// gcc -o iter -O2 iter.c

int main(int argc, char **argv) {
int NUMBER, i, s = 0;
NUMBER = atoi(argv[1]);

for (s = i = 0; i < NUMBER; ++i) {
s += 1;

}
return 0;

}

100,000 100,000,00010,000,0001,000,000 1,000,000,000

29

Riddle #1: Simple loop iterations
// Number to guess: How many iterations of
// this loop can we do in one second?
// gcc -o iter -O2 iter.c

int main(int argc, char **argv) {
int NUMBER, i, s = 0;
NUMBER = atoi(argv[1]);

for (s = i = 0; i < NUMBER; ++i) {
s += 1;

}
return 0;

}

100,000 100,000,00010,000,0001,000,000 1,000,000,000

30

Riddle #1.1: Same thing, but with Python
#!/usr/bin/env python

// Number to guess: How many iterations of
// this loop can we do in one second?

def f(NUMBER):
s = 0
for _ in xrange(NUMBER):

s += 1

import sys
f(int(sys.argv[1]))

100,000 100,000,00010,000,0001,000,000 1,000,000,000

31

Riddle #1.1: Same thing, but with Python
#!/usr/bin/env python

// Number to guess: How many iterations of
// this loop can we do in one second?

def f(NUMBER):
s = 0
for _ in xrange(NUMBER):

s += 1

import sys
f(int(sys.argv[1]))

100,000 100,000,00010,000,0001,000,000 1,000,000,000

32

Riddle #2: Writing to the main memory
// gcc -o iter -O2 iter.c
// includes

static const unsigned int CHUNK_SIZE = 1024*1024;
char chunk[CHUNK_SIZE];

int main(int argc, char **argv) {
long long int NUMBER, bytes_written = 0;
char *mem = (char*) malloc(128*sizeof(char)*CHUNK_SIZE);
NUMBER = std::stol(argv[1]);
size_t chunks_idx = 0;
while(bytes_written < NUMBER) {

memcpy(mem+chunks_idx*CHUNK_SIZE, chunk, CHUNK_SIZE);
bytes_written += CHUNK_SIZE;
chunks_idx = (chunks_idx+1)%128;

}
printf("%c\n", mem[NUMBER%11]);

}

100,000 100,000,00010,000,0001,000,000 1,000,000,000

33

Riddle #2: Writing to the main memory

100,000 100,000,00010,000,0001,000,000 1,000,000,000

34

// gcc -o iter -O2 iter.c
// includes

static const unsigned int CHUNK_SIZE = 1024*1024;
char chunk[CHUNK_SIZE];

int main(int argc, char **argv) {
long long int NUMBER, bytes_written = 0;
char *mem = (char*) malloc(128*sizeof(char)*CHUNK_SIZE);
NUMBER = std::stol(argv[1]);
size_t chunks_idx = 0;
while(bytes_written < NUMBER) {

memcpy(mem+chunks_idx*CHUNK_SIZE, chunk, CHUNK_SIZE);
bytes_written += CHUNK_SIZE;
chunks_idx = (chunks_idx+1)%128;

}
printf("%c\n", mem[NUMBER%11]);

}

Memory writing optimized: STREAM
Function Best Rate MB/s Avg time Min time Max time
Copy: 60071.5 0.010935 0.010654 0.012926
Scale: 60645.6 0.010578 0.010553 0.010592
Add: 66335.0 0.014515 0.014472 0.014544
Triad: 67687.6 0.014460 0.014183 0.016421

And the winner is...

35

Memory writing optimized: STREAM
Function Best Rate MB/s Avg time Min time Max time
Copy: 60071.5 0.010935 0.010654 0.012926
Scale: 60645.6 0.010578 0.010553 0.010592
Add: 66335.0 0.014515 0.014472 0.014544
Triad: 67687.6 0.014460 0.014183 0.016421

And the winner is...

36

#pragma omp parallel for
for (j=0; j<STREAM_ARRAY_SIZE;

j++)
c[j] = a[j];

#pragma omp parallel for
for (j=0; j<STREAM_ARRAY_SIZE;

j++)
b[j] = scalar*c[j];

#pragma omp parallel for
for (j=0; j<STREAM_ARRAY_SIZE;

j++)
a[j] = b[j]+scalar*c[j];

#pragma omp parallel for
for (j=0; j<STREAM_ARRAY_SIZE;

j++)
c[j] = a[j]+b[j];

Riddle #3: Writing to a drive
// Number to guess: How many bytes can we
// write onto a drive in a second?
static const uint32_t CHUNK_SIZE =
1024*1024;
char s[CHUNK_SIZE];

void cleanup(int fp, char* name) {
fsync(fp);
close(fp);
remove(name);

}

100,000 100,000,00010,000,0001,000,000 1,000,000,000

int main(int argc, char** argv) {
uint32_t NUMBER, bytes_written = 0;
memset(s, CHUNK_SIZE, 'a');
NUMBER = std::stoul(argv[1]);
int fp = open("./tmp", O_WRONLY | O_CREAT);
while (bytes_written < NUMBER) {

write(fp, s, CHUNK_SIZE);
bytes_written += CHUNK_SIZE;

}
cleanup(fp, "./tmp");

}

37

int main(int argc, char** argv) {
uint32_t NUMBER, bytes_written = 0;
memset(s, CHUNK_SIZE, 'a');
NUMBER = std::stoul(argv[1]);
int fp = open("./tmp", O_WRONLY | O_CREAT);
while (bytes_written < NUMBER) {

write(fp, s, CHUNK_SIZE);
bytes_written += CHUNK_SIZE;

}
cleanup(fp, "./tmp");

}

Riddle #3: Writing to a drive
// Number to guess: How many bytes can we
// write onto a drive in a second?
static const uint32_t CHUNK_SIZE =
1024*1024;
char s[CHUNK_SIZE];

void cleanup(int fp, char* name) {
fsync(fp);
close(fp);
remove(name);

}

100,000 100,000,00010,000,0001,000,000 1,000,000,000

38

Interlude: SSD vs HDD performance
Sustained sequential reads for the data center-grade parts:
➔Intel 400GB SATA3 SSD -> 500MB/s
➔Intel 400GB PCIe SSD -> 2000MB/s
➔HGST 4TB SATA3 -> 227 MB/s

Drives can be set up with LVM striped partition and various file systems.

How much time would it take to fill up a 400GB SSD with data?

39

Back to riddle #3
// Number to guess: How many bytes can we
// write onto a drive in a second?
static const uint32_t CHUNK_SIZE =
1024*1024;
char s[CHUNK_SIZE];

void cleanup(int fp, char* name) {
fsync(fp);
close(fp);
remove(name);

}

int main(int argc, char** argv) {
uint32_t NUMBER, bytes_written = 0;
memset(s, CHUNK_SIZE, 'a');
NUMBER = std::stoul(argv[1]);
int fp = open("./tmp", O_WRONLY | O_CREAT);
while (bytes_written < NUMBER) {

write(fp, s, CHUNK_SIZE);
bytes_written += CHUNK_SIZE;

}
cleanup(fp, "./tmp");

}

40

350,000,000 250,000,000 120,000,000PCIe SSD SSD HDD

Riddle #4: What’s wrong with this function?
// #include this and that
static const size_t DIM = 2048;

// sums up all the numbers in a 3d array
long long unsigned sumup(unsigned char array[DIM][DIM][DIM]) {

long long unsigned sum = 0LL;
for(size_t i=0; i<DIM; ++i)

for(size_t j=0; j<DIM; ++j)
for(size_t k=0; k<DIM; ++k)

sum += array[i][k][j];
return sum;

}

41

Riddle #4: What’s wrong with this function?
// #include this and that
static const size_t DIM = 2048;

// sums up all the numbers in a 3d array
long long unsigned sumup(unsigned char array[DIM][DIM][DIM]) { //3d array

long long unsigned sum = 0LL;
for(size_t i=0; i<DIM; ++i)

for(size_t j=0; j<DIM; ++j)
for(size_t k=0; k<DIM; ++k)

sum += array[i][k][j];
return sum;

}

While we iterate over the array, the consecutive
elements are DIM bytes away from each other.
This means, that for every element we need to
bring new cache line into L3 cache.

42

sum += array[i][j][k];

Riddle #4.1: Memory access pattern
// Number to guess: How many bytes can
// we traverse randomly in one second

int main(int argc, char **argv) {

int NUMBER, i, j = 1;

NUMBER = atoi(argv[1]);

char* array = malloc(NUMBER);

for (i = 0; i < NUMBER; ++i) {

j = (j * 2) % NUMBER;

array[j] = j;

}

printf("%d", array[NUMBER/2]);

}

// No numbers to guess here

int main(int argc, char **argv) {

int NUMBER, i, j = 1;

NUMBER = atoi(argv[1]);

char* array = malloc(NUMBER);

for (i = 0; i < NUMBER; ++i) {

j = (j * 2) % NUMBER;

array[i] = j;

}

printf("%d", array[NUMBER/2]);

}

sequential random-ish

Here NUMBER = 80M

100,000 100,000,00010,000,0001,000,000 1,000,000,000
43

Riddle #4.1: Memory access pattern
// Number to guess: How many bytes can
// we traverse randomly in one second

int main(int argc, char **argv) {

int NUMBER, i, j = 1;

NUMBER = atoi(argv[1]);

char* array = malloc(NUMBER);

for (i = 0; i < NUMBER; ++i) {

j = (j * 2) % NUMBER;

array[j] = j;

}

printf("%d", array[NUMBER/2]);

}

// No numbers to guess here

int main(int argc, char **argv) {

int NUMBER, i, j = 1;

NUMBER = atoi(argv[1]);

char* array = malloc(NUMBER);

for (i = 0; i < NUMBER; ++i) {

j = (j * 2) % NUMBER;

array[i] = j;

}

printf("%d", array[NUMBER/2]);

}

sequential random-ish

Here NUMBER = 80M

100,000 100,000,00010,000,0001,000,000 1,000,000,000
44

Part 4: Tools

Im
a

g
e

 s
o

u
rc

e
:

h
tt

p
:/

/o
w

n
ie

u
.6

x
9

.f
r/

45

htop

46

taskset / numactl / GOMP_CPU_AFFINITY
➔Both tools allow setting CPU affinity
➔Usually yields better results than when relying on the OS scheduler
➔GOMP_CPU_AFFINITY is an env. var. recognized by OpenMP
➔Definitely compulsory when reading from a high bandwidth IO device (PCIe,

SATA etc.)

47

$ cat get_cpu.c
#include <stdio.h>
#include <sched.h>

int main() {
int cpu;
cpu = sched_getcpu();
printf("Running on core %d\n", cpu);

}

$ gcc get_cpu.c -o get_cpu
$ taskset -c 42 ./get_cpu
Running on core 42

GOMP_CPU_AFFINITY
You remember the STREAM benchmark? (slide #35)

$./stream
Function Best Rate MB/s Avg time Min time Max time
Copy: 61167.9 0.010488 0.010463 0.010527
Scale: 60663.4 0.010573 0.010550 0.010599
Add: 67359.2 0.014274 0.014252 0.014306
Triad: 68196.6 0.014345 0.014077 0.016322

$ GOMP_CPU_AFFINITY=0-55 ./stream
Function Best Rate MB/s Avg time Min time Max time
Copy: 65938.5 0.009743 0.009706 0.009803
Scale: 65285.8 0.009850 0.009803 0.010001
Add: 73716.3 0.013090 0.013023 0.013141
Triad: 73994.0 0.013038 0.012974 0.013110

48

perf / ocperf
➔perf gives insights into Hardware Events from CPU’s Performance Monitoring

Units. Ocperf is a thin layer on the top of perf adding more human readable
names

49

$ python ../pmu-tools/ocperf.py stat -e
mem_load_uops_retired.l3_miss,uops_executed.stall_cycles ./indices_good
perf stat -e
cpu/event=0xd1,umask=0x20,name=mem_load_uops_retired_l3_miss/,cpu/event=
0xb1,umask=0x1,inv=1,cmask=1,name=uops_executed_stall_cycles/
./indices_good

Performance counters for './indices_good':

14'054 mem_load_uops_retired_l3_miss
29'199'824 uops_executed_stall_cycles

1.969126 seconds time elapsed

Performance for './indices_bad':

127'067 mem_load_uops_...
24'792'121'333 uops_executed_...

11.33531028 seconds

Concluding remarks

50

➔The aim of the lecture was to:
◆ summarize the last decades in evolution of computing hardware,

◆ get you to realize that performance is handled not only by the compiler and libraries. The story is
far more complicated,

◆ give you rough estimates on possible throughputs and performance showstoppers.

◆ give you an overview of the computing landscape,

➔When facing a huge data flow, we can’t afford using only a fraction of the
hardware we have.

➔Performance is complicated business. When in doubt, look to the specification.. or
write a test program. Be brave and bold.

Thank you!
Questions?

Catch me at ISOTDAQ until tomorrow morning
or

mail pawel.szostek@cern.ch
51

Im
a

g
e

 s
o

u
rc

e
:
X

K
C

D

