ISOTDAQ 2016
WEIZMANN INSTITUTE FOR SCIENCE
NIKO NEUFELD, CERN EP

PRACTICAL ASPECTS OF
NETWORKS FOR DATA
ACQUISITION

THE DATA TORRENT

EXPERIMENTS GENERATE “BIG” DATA

LHC: (per experiment) about 100 GB/s(!) to the software trigger
(HLT), about 1 GB/s to storage

SKA: 68 Tbits/s (raw), 0.5 to 10 PB/day(!) of image data

ESRF: > 8 GB/s for fast cameras, > 10 TB retained data (for a
single beamline!)

CTA: 4 GB/s to storage, 1.5 - 20 PB / year

THE DATA TORRENT
DATA GROWTH ON THE INTERNET

GLOBAL INTERNET TRAFFIC
N EXABYTES PER MONTH

100 exab vie

One-year growth = total 2010 Internet traffic

THE INTERNET IS NO LONGER FOR ...

It's for Video and mobile

15 bytes become 3.5 MB

WHAT IS THE BANDWIDTH USED FOR®?

Top sites by percentage of downstream internet traffic
in North America

Netflix
YouTube
HTTP
iTunes 3.36
BitTorrent 76
Facebook 65

mPeG [l 2.07
Amazon Video [l 1.97

ssL [1.91

Hulu . 1.91

HIGH DATA RATE REQUIRED?
NETWORKS ARE THE WAY
T0 GOl

NETWORKS

GENERAL

Networks connect multiple devices over (large) distances

In a network devices are equal (“peers”) unlike in bus systems
(VME, USB, PCI), which have “masters” and “slaves”

In a network devices communicate directly with each other

Data and control use the same path (again unlike in many bus-
systems)

At the signaling level network technologies are normally (multiple)
serial, many can use multiple physical layers (—> later) including
optical and radio-transmitted

NETWORKS

TECHNOLOGIES

The telephone network (now being replaced by IP)

Ethernet (IEEE 802.3)

ATM (the backbone for 2G cell-phones), RapidlO (3G and 4G)

InfiniBand, OmniPath

and many, many more

Network technologies are sometimes functionally grouped

e Cluster interconnect (OmniPath, InfiniBand) 1 m - 150 m (in a data-centre)
* Local area network (LAN), up to ~ 10 km (in and between buildings)

 Wide area network (ATM, SONET) > 50 km (between cities, countries...)

WHAT MAKES A NETWORK?®

* A network has two important aspects

* A physical implementation: wires, optical fibres, devices,
connectors, cables, radio-transmitters, etc...

* A protocol defining how data are exchanged between nodes on
the network

NETWORKS

PROTOCOL STACK

OSI| model

Name Example protocols
Application Layer HTTP, FTP, DNS, SNMP, Telnet
Presentation Layer SSL, TLS

Session Layer NetBIOS, PPTP

Transport Layer TCP, UDP

Network Layer IP, ARP, ICMP, IPSec

Data Link Layer PPP, ATM, Ethernet

Physical Layer Ethernet, USB, Bluetooth, IEEE802.11

R ———) :

HOW TO CALL THINGS

COMMON TERMINOLOGY HELPS

PDU (Protocol Data Unit)
(units of data passed between layers)

T ™
Header Data

TRANSMIT , RECEIVE
Term for a o'y jl AT Term for a

_ I unit of data
unit of data s <__ Usiit — - DATA at this layer

at this layer - (sometimes called “Layer 8°)

Data ;l Application hYQ‘ ;l * Data
R v o NS i

Data Bassion layair B Lata

Segment

~ Packet, Datagram

Frame, Cell Data link layg- Frame, Cell

Frame, Bit Physical h?ﬂ" Frame, Bit

——

IN NETWORKING WE DO NOT TALK ABOUT BYTES BUT ABOUT OCTETS (8 BITS)
11

ETHERNET
ONE NETWORK TO RULE THEM ALL

 |nvented in 1973,

°._ Is an open |IEEE standard
* since 1983 IEEE 802.3

Now trhe ‘dominant LAN
technology (By far)

THE RISE OF ETHERNET

Historical and Predicted Port Delivery
by Ethernet Speed

Recent history suggests that standards ratification and infrastructure
cabling lead actual port sales by ~3 years

1Gbps 10Gbps 40/100Gbps
Ratified Ratified

million server units

wdl

g

ETHERNET

PREAMBLE | DESTINATION SOURCE LENGTH/ ---DATA...| FCS
ADDRESS ADDRESS ETHERTYPE

Uariable
46—-15060
Bytes

48 bit addresses, also called MAC addresses (Media Access Control)

Payload: min 64 bytes, max 1518 bytes —> many but not all devices support
“jumbo” frames up to 9000 bytes. The maximum number acceptable by a
device is called the Maximum Transmission Unit (MTU)

Source address usually “burnt” into a device (in practice read from an EEPROM
or similar and set by software)

You can override your source address (using ethtool(8) or ip(8) command)

14

NETWORK PROTOCOLS

|P

Two major versions

* |Pv4 and IPvé6 (focus on v4 for the
rest of this)

137.158 128 .0/3¢ (netmask 255.255.128.0)
In IP devices carry a 32-bit address 1111 1111 1111 1111 1too 0000 0000 0000
0

o Q I
M e SR ialae oy GO 1000 1001 | 1001 1110 | 1}000 0000 | 0000 0000

IP groups several devices into a network

/ subnet using the net mask 198.134.0.0/16 (netmask 255.255.0.0)
1111 1111 1111 1111 | 0000 0000 0000 0000
 Net mask I

1100 0110 | 1000 0110 § 0000 0000 | O0OOO 0000

« 8, 16, 24 bit wide net masks have

special names (Class A, Class B 205.37.193.128/26 (netmask 255.255.255.192)
and Class C) 1111 1111 1111 111 1111 1111 11|oo 0000

« The network itself has an address (all 1100 1101 | 00100101 | 1100 0001 | 10§00 0000
unmasked bits 0) e.g. 137.158.0.0

* There is a broad-cast address (all
unmasked bits 1) e.q.
1:37:1585255:255

THE IPV4 HEADER

11|11|‘||1|11|21|||11|3|111111

IHL (Head .
Lén;i,er Type of Service (TOS) Total Length

Version

o IP Flags
Identification x D M Fragment Offset

20
Bytes

Time To Live (TTL) Protocol Header Checksum
IHL
(Internet
Header
Length)
16 Destination Address v

Source Address

20 IP Option (variable length, optional, not common)

3

1
Bit01234567890123456789312345678901

<4— Nibble —bl- Byte —>|— Word >

Version Protocol Fragment Offset IP Flags
- S — =

Version of IP Protocol. 4 and IP Protocol ID. Including (but ~ Fragment offset from start of

6 are valid. This diagram not limited to): IP datagram. Measured in 8

represents version 4 1ICMP 17 UDP 57 SKIP byte (2 words, 64 bits) x 0x80 reserved (evil bit)

structure only. g 'T%"gp ‘;(7) ggg gg g'gf: increments. If IP datagramis D 0x40 Do Not Fragment

9IGRP 51 AH 115 LoTP fragmented, fragment size M 0x20 More Fragments

Header Length (Total Length) must be a follow

B multiple of 8 bytes. RFC 791

Number of 32-bit words in Total Length E—————

TCP header, minimum value e ____Header Checksum | p50.c6 refer to RFC 791 for

of 5. Multiply by 4 to get byte Total length of IP datagram, Checksum of entire IP the complete Internet

CotL. o ;:Stfgc:“iﬁ”é;'tgsagme“‘ed' header Protocol (IP) Specification.

Copyright 2008 - Matt Baxter - mjb@fatpipe.org - www.{atpipe.org/~mjb/Drawings/

16

NETWORK PROTOCOLS

IP OVER ETHERNET

HLEN Total Length
| Identification m Fragment Offset
| Timeto Live Header Checksum

Source IP address

Destination IP address

/,: IP Options (may be null) Padding
| IP Datagram Data (up to 65535 bytes)

DA | SA(;‘8’&‘)’ IP Header and Data

THE INTERNET PROTOCOLS

A SIMPLIFIED STACK

Applications SMTP, Telnet, FTP, Gopher...

Transport

Internetwork

Network Interface

Ethernet, Token-Ring, FDDI, X.25, Wireless. Async, ATM,
and Hardware SNA

RELATING IP AND ETHERNET: ARP

ARP R =‘-‘ message sen out

@ IP: 192.168.1.110

Router @ IP: 192.168.1.120
or host Q |

B @ IP: 192.168.1.130

ARP Request

@ IP: 192.168.1.110

IP: 192.168.1.120

IP: 192.168.1.130 [

|

source: http://www.louiewong.com/

19

ARP

ARP requests are Ethernet broadcasts

They are sent to and received by all members of a Virtual LAN (VLAN). A
VLAN is a arbitrary selection of ethernet devices (hosts or switches).
Broadcasts are only forwarded within a VLAN - VLANSs are so-called
“broadcast domains”.

Because the protocol is relatively costly, ARP replies are cached
« With all the usual problems of caches
On Linux you can look at the cache using ip neighbour show

You can also manipulate this table / sometimes it is useful to fix an
Ethernet / IP relation

NETWORK PROTOCOLS

UDP

UDP Header - RFC 768

2 |3 6 7 8 10 | 11 112 |13 |1 15 16 |17 (1819 20 21 |22 |23 24 25 26|27

Adds concept of : =

Destination Port

Port
Unreliable datagrams : ——

== MmessSa g es Common UDP Well-Known Ports

Pott ' Description Port Description
| Echo . 1138 Netbios-dgm
19 | Chargen | | 161 Snmp
37 Time 162 Snmp-trap
« Can get lost 53— Doman | [500Tiseiee
67 | Bootps (DHCP) ‘ 514 Syslog
68 | Bootpc (DHCP) ‘ 520 Rip
69 | Thp ‘ | 33434 Traceroute
137 | Netblos-ns

e Can arrive out of

. Length
sen d N g (@] rd er (!) The number of bytes in the entire catagram, inchuding the header, minimum value =8

Checksum

Calculated using a pseudo header that includes the |P source and destination addresses, protocol and UDP length, UDP header and
data

Sent in one go Based on RFC 768

Maximum size 64 kB

Source: optimus5.com

http://optimus5.com

NETWORK PROTOCOLS

TCP/IP

» TCP/IP is a child of Unix:
Bit: 0
« everything is a file and what

is not a file looks like a file
Sequence number

o)
s,
m
* sockets, byte-streams, thereg Acknowledgement number

is no “maximum?” size Window

Urgent pointer

* TCP is a connected protocol

* TCP also has ports which are
distinct from UDP ports Source: www.kaderali.de

» TCPisreliable - packets do not - Data are sent in chunks called “segments” the

get lost and arrive in sending maximum segment size is abbreviated to MSS
order

http://www.kaderali.de

TCP/IP
STATE DIAGRAM (SIMPLIFIED)

CONNECTISYN (Step 1 of the 3-way-handshake)

* This needs meditation and a LI Coenecemve peh o[l
—— sener/sender path CLOSE/-
good book (or wikipedia) “"“"* ‘

'Step 2 of the 3-way-handshake) SYN/SYN+ACK

Key points are that every l
attempt is made that sender SYMSYNACK (similtaneous open)
and receiver are synchronised

RST/- SENDISYN

Data exchange occurs

throughout the communication : [ESTABLISHED | <. Swacksce

(Step 3 of the 3-way-handshake)

(handshakes)

| CLOSE/FIN

When used properly - also

during shutdown, no data

should be lost or corrupted FINWAITL | CLOSING CLOSE WAIT
FINVACK/ACK :

(ever) :

Active CLOSE Passive CLOSE

CLOSE/FIN

But all this is not quick! For v
FIN WAIT 2 x| TmE warT
DAQ applications the

connection needs to remain.

"Tcp state diagram fixed new" by Scil100. Licensed under CC BY-SA 3.0 via Commons
- https://commons.wikimedia.org/wiki/File:Tcp state diagram fixed new.svg#/media/File:Tcp state diagram fixed new.svg

23

https://commons.wikimedia.org/wiki/File:Tcp_state_diagram_fixed_new.svg#/media/File:Tcp_state_diagram_fixed_new.svg

NETWORK PROTOCOLS

SOME FEATURES OF TCP/IP 1)

« MSS and MTU path discovery

* TCP uses an algorithm to determine the maximum allowed segment size
which fits into the least common MTU along the path - this is even
dynamic but requires ICMP (not in UDP)

* Nagle algorithm

* Normally TCP waits a bit to collect small messages into a single segment
to be close to the MSS.

e This can be very bad for latency and can be switched off by setting the
TCP_NODELAY option (setsockopt)

NETWORK PROTOCOLS

MORE FEATURES OF TCP/IP

« TCP/IP was conceived to work well over long distance, unreliable
lines

There is a lot(!) of literature and algorithms to achieve good
performance under such conditions (“slow start”, “window

n '/}

scaling”, “bandwidth delay product”, ...). Many socket options
(tcp(7)) allow to influence this

In DAQ (usually) a reliable LAN is used and none of this is
relevant, as there should be no appreciable packet-loss. This

should be verified of course using counters and tools such as
wireshark, etc...

RELIABLE DATAGRAMS

In DAQ we normally want to

send reliable datagrams
| < len) {

n = recv(socket, buf, len,

Can use UDP with
(n < 0) {

homemade re-transmission

Or TCP with NO_DELAY

POSIX has a few more little

pitfalls, e.g. read and recv
can return fewer bytes than Lots of boring boilerplate code has been

requested(!). You will see omitted

therefore code like this
Error-checking is of course (even more)

vital in network programming

PROTOCOLS
RELIABLE MESSAGES: OMQ

Message libraries such as
OMQ or DIM take away some
of the pain of dealing with
sockets directly

They encapsulate error-
handling and some oddities
of the socket semantics (like
the boring while loop on
recv) and the setup of the
addresses

Why reinvent the wheel? If
you can use them!

receiver

import zmq

context = zmq.Context()

socket = context.socket(zmq.REP)
socket.bind("tcp://127.0.0.1:5000")

while True:
msq = socket.recv()
print "Got", msg
socket.send(msqg)
sender
import zmq
context = zmq.Context()
socket = context.socket({zmqg.REQ)
socket.connect("tcp://127.0.0.1:5000") |
Ior i in range(10): |
msg = "msg %s" % 1
socket.send(msqg)
print "Sending", msg
msg_in = socket.recv()

PROTOCOL OVERHEADS
SOME NUMBERS AND WISDOM

“In protocol design, perfection
is achieved not when nothing
can be added, but when
nothing can be taken away”

“Any technology can be two
out of the following three:
cheap, fast, reliable”

* Every layer a adds a header:

* Ethernet 14 octets In addition protocols add packet over heads
(acknowledgments for TCP for example)

 |P 20 octets

e TCP 20 octets

A SIDENOTE ON DOCUMENTATION

BEFORE GOOGLE THERE WAS MAN

The man pages come in several
sections

Section 7 contains all the
protocols (man 7 ip, man 7

tcp)

Section 2 contains the sys-
calls (man 2 setsockopt)

Section 8 contains the
configuration tool (man 8 ip)

It takes a bit of practice to read
them, but understanding them
means understanding sockets,
protocols, etc...

Wikipedia is usually an excellent
complement

NAME

baby -- create new process from two parents
SYNOPSIS

baby -sex [m|f] [-name name]
DESCRIPTION

baby is initiated when one parent process polls
another server process through a socket connection
in the BSD ver- sion or through pipes in the
System V implementation. baby runs at low priority
for approximately forty weeks and then terminates
with a heavy system load. Most systems require
constant monitoring when baby reaches its final
stages of execution.

Older implementations of baby did not require both
initiating processes to be present at the time of
completion.

NETWORK TOOLS TO KNOW
ICMP PING

* Internet Control Message e e 2
: : £ 0 ,No OW THE
Protocol (ICMP) is a suite o AND TLLTRY ToHIT T BACK

utility messages to notify To You WITH THE. BALL
network devices about various

problems and status of other
devices

* The most well known is the
Echo Request message which is
used by the Ping command

SearchllDRmbcn4,6

e Watch out for the latency

(round-trip time) and its stability Why the game "PONG-PING"
never caught on.

T ———

gw22:~>ping labl4

PING labl4.1lbdag.cern.ch (10.128.210.114) 56(84) bytes of data.

64 bytes from labl4.lbdag.cern.ch (10.128.210.114): icmp_seq=1 tt1=60 time=1.11 ms
64 bytes from labl4.lbdag.cern.ch (10.128.210.114): icmp_seq=2 tt1=60 time=1.17 ms
64 bytes from labl4.lbdag.cern.ch (10.128.210.114): icmp_seq=3 tt1=60 time=1.20 ms

30

NETWORK UTILITIES TO KNOW

IPERF

* Standard tool <perf-3.1.1plus@2:~/devel/iperf-3.1.1>./src/iperf3 -c localhost
Connecting to host localhost, port 5201

. [JRL;kﬂtpsj/ 4] local ::1 port 43530 connected to ::1 port 5201

ID] Interval Transfer Bandwidth Retr Cwnd

4] 0.00-1.00 sec 1.79 GBytes 15.4 Gbits/sec 1.12 MBytes

. 4] 1.00-2.00 sec 1.84 GBytes 15.8 Gbits/sec 1.12 MBytes

Use only iperf 4] 2.00-3.00 sec 1.82 GBytes 15.6 Gbits/sec 1.25 MBytes

v3 4] 3 .00 sec 1.87 GBytes 16.0 Gbits/sec 1.37 MBytes
4] 4. .00 sec 1.83 GBytes 15.8 Gbits/sec 1.62 MBytes

5. .00 sec 1.84 GBytes 15.8 Gbits/sec 1.75 MBytes

v2 has 6.

7

8

9.

iperf.fr/

.00 sec 1.77 GBytes 15.2 Gbits/sec 1.81 MBytes
known bugs, sec 1.86 GBytes 15.9 Gbits/sec 1.87 MBytes
sec 1.86 GBytes 16.0 Gbits/sec 1.87 MBytes

Gbits/sec 1.87 MBytes

DSBS I S IS IS S L S

QQQQQQQQ
GQQGGGQQ

in particular

for bi-

direction Interval Transfer Bandwidth
tests 0.00-10.00 18.3 GBytes 15.8 Gbits/sec sender
0.00-10.00 18.3 GBytes 15.8 Gbits/sec receiver

It can use 1perf Done.

multiple -~

streams in
parallel
(important at

high speeds)

NETWORK TOOLS TO KNOW

IPTRAF

IPTraf

Needs root privs

(“sudo”) or
CAP_NET_ADMIN S

(man capabilities) 1Pv4:
IPvb:

TCP:
UDP:

Good & quick ICMP:

. Other IP:
overview on how MOn-TPs

much “stuff” is

. Total rates: Broadcast packets:
gOIﬂg on Broadcast bytes:
Incoming rates:

Detailed analysis

IP checksum errors:

needs other tools Outgoing rates:

THE EFFECT OF THE MTU

Measured on 1350
network controller

iperf3 TCP/IP no
special tunings

CPU Intel 2630v3 (8
core)

Note that standard
MTU 1500 does not
give line-rate even
though efficiency is
already high. This
effect is stronger on
weaker CPUs

eff = (MTU - 54) / MTU

—
3
)
oo
N —
)
et
L
—_

(o))
o
o

Throughput vs MTU and efficiency

100 200 400 512 800 1000 1500 3000 5000 7000 S000
MTU (Octets)

96.00%

' 94.00%

92.00%

90.00%

88.00%

- 86.00%

84.00%

82.00%

80.00%

78.00%

THE LINUX NETWORK STACK

KERNEL 2 yvésdf

TCP send Buffer
(tcp_wmem)

The NIC DMAs the packets from/to |
buffers managed by the kernel TCP Process

S k_b uff tcp_transmit_skby)
softirf to free ip_ _xmit()
packet descriptor

Protocol verification and handling t

: completion IP Layer
done in the kernel queue

dev_gueue_transmit() l

Read/Write calls from user-space qdisc

(txqueuelen)

applications normally entail a copy
from/to kernel space hard,_start_xmit()

 Standard Linux IP protocols do
not support zero-copy

Device Driver

Sizes of many of these buffers can X ~x7

o Interrupt .
be influenced by kernel parameters Canatnins |D%Engme

NIC Memory

\J
Packet

source: http://www.ece.virginia.edu/cheetah/documents/papers/TCPlinux.pdf
34

PERFORMANCE

LINUX TUNING - KERNEL PARAMETERS

net.core.rmem_max: upper limit for buffer in sockets for reading

* increase if you loose a lot of messages (UDP) or performance is bad (TCP) - note you also need to
adapt the TCP options

net.core.wmem_max: same for writing
net.core.netdev_max_backlog: how many packets can be waiting to be handled
* increase if you loose messages, can be caused by competing applications or hardware (IRQ sharing!)
To change use
* sysctl -w <parametername> <value>
To read use
* sysctl <parametername>

Documentation in every kernel source tree in the doc folder or https://www.kernel.org/doc/
Documentation/kernel-parameters.txt

https://www.kernel.org/doc/Documentation/kernel-parameters.txt

THE WINDOWS NETWORK STACK

User Mode

TDI Clients Kernel Mode
TDI

Next Generation TCP/IP Stack (tcpip. sys)

TCP UDP RAW

IPv4 IPv6

Loop- IPv4 IPv6
back Tunnel Tunnel

802.3 WLAN

* The good news: winsock is an exact copy of the Berkeley
socket interface

NETWORK ADAPTERS & DRIVERS

 Main manufacturers are
today: Intel, Broadcom, in
the high end you find also
Chelsio, Solarflare, Mellanox Interrupt!

 Watch out for difference ¢

between “desktop” and

“server” adapter ANt
Handler

* desktop adapters can

have very small on-chip | Bottom
Half

memory and be
vulnerable to packet loss

User’s
Application

data

LERO-COPY

THE PROBLEM

Buffering is crucial in
: Application
networking because you never context

know when data will arrive

Read buffer

But (shared) buffers are risky

from a security and stability Application buffer

Socket buffer

2
e

point of view N
3

This is avoided by copying to
private buffers !
NIC buffer

Copy operations however
need CPU cycles and memory

bandwidth | > CPU copy

Traditional copy-model in a file-server (source IBM)

~ DMA copy

LERO-COPY
A SOLUTION

The key is to let the DMA engines

talk to each other Application

context

For this application has to own the
buffer (and lock the pages in RAM)

Read buffer

Kernel safety functions are

bypassed transferTo()

This is partially possible in Linux for | Descriptor
fileserver using the sendfile system
call

In general this is a problem only for
data-transfers > 10 Gbit/s and (on
Linux at least) requires not using | | NIC buffer
the standard TCP/IP stack

= DMA copy

CONNECTING MANY DEVICES

SWITCHES

Switches normally operate at the Ethernet level (Layer 2)

There are managed switches, which allow configuration and monitoring and
unmanaged switches which are fully automatic and not configurable

Monitoring is usually done via SNMP (a UDP based protocol)

* From linux use snmpwalk

For DAQ buffer-sizes should be configured as large as possible

» Often space can be made available by reducing the number of traffic classes
(used for priority)

Configuration is using a web-interface or a Command Line Interface (CLI) which is
usually a variant of the CLI invented by Cisco (if you know one, you will be
annoyed but not stopped by any other)

NETWORK TOOLS TO KNOW

ETHTOOL

* ethtool allows you to manipulate the Ethernet layer and your NIC
* It shows very useful information , eg:

 #link status
sudo ethtool eth1 | grep Link
Link detected: yes

* #link statistics
sudo ethtool eth1 -S
loads of numbers defined by 802.3 (watch out for errors)
Even a small amount of errors usually means a serious problem (cable, optics, etc...)

* It can be used to set important parameters, eg:

* # set number of DMA descriptors for receiving to 4000
sudo ethtool eth1 -G rx 4000

ETHERNET SWITCH INSIDE

Switch

Receiving buffers

)

QOutput Queues

Packet
handling

- Address lookup

- Traffic classification

Scheduler

+§_|-.
T

Scheduler

source: www.iecstfa.org
4

2

http://www.iecstfa.org

ETHERNET FLOW CONTROL

AND IT’S PROBLEMS

PC 1

16.0.0.1/24
16.0.0.2/24 Gb NIC \‘\

Indirect PAUSE
Propcga‘.lor/
gi (V42 Gi 0145

| “o BERSEEE55500 S0000000caag 1y 16.00324 NI
Dell Force10 S50N \, \

CONNECTING NETWORKS

ROUTERS

In DAQ we tend to use private LANSs

For larger or multistage systems, it is almost always better to use
layer 3 (IP). A layer-3 switch is called a router.

* |P addresses are easier to manage, they have symbolic names,
there is a (simple) loop protection

Routers offer many, many features, most of which are not needed
in a LAN for DAQ

A static setup eases debugging, the failover features of internet
routing protocols are usually too slow to be of big help in DAQ

NETWORK TOOLS TO KNOW

TRACEROUTE

» traceroute (tracert on M$-Windows)

* Checks the connectivity between nodes. It shows all (many) of the intermediate
devices.

* If you loose packets any of them are a candidate

* It can show you if things go the way you think they would

hltb1l00l:~>traceroute -n www.cern.ch
traceroute to www.cern.ch (188.184.9.235), 30 hops max, 60 byte packets
10.130.122.254 1.061 ms 1.067 ms 1.099 ms
172.16.1.1 ©0.357 ms 0.407 ms 172.16.1.5 0.447 ms
137.138.18.241 2.460 ms 2.456 ms 2.626 ms
172.24.2.145 0.361 ms ©0.387 ms 0.381 ms
172.24.3.17 ©0.457 ms 172.24.3.81 ©0.454 ms 0.493 ms
172.24.3.178 ©0.517 ms 172.24.3.158 0.404 ms 172.24.3.178 5.135 ms
188.184.9.235 0.564 ms 0.572 ms 0.548 ms

45

NETWORK TOOLS TO KNOW

Filtering lets you focus on
what's interesting

It is much more efficient to
filter at the libpcap

(“capture”) level than using
the display filter in wireshark

This is shared by many tools:
dumpcap, tcpdump, etc..

LIBPC A Pcapture only traffic to or from IP address 172.18.5.4:

host 172.18.5.4
Capture traffic to or from a range of IP addresses:

net 192.168.0.0/24

net 192.168.0.0 mask 255.255.255.0
Capture traffic from a range of IP addresses:

src net 192.168.0.9/24

src net 192.168.0.9 mask 255.255.255.0

Capture traffic to a range of IP addresses:

dst net 192.168.0.0/24

dst net 192.168.0.0 mask 255.255.255.0
Capture only DNS (port 53) traffic:

port 53

From the wireshark wiki

46

NETWORK TOOLS TO KNOW

WIRESHARK

Microsoft [Wireshark 1.6.0 (SVN Rev 37592 from [trunk-1.6)]

Ble Edt Yew Go Coptre Awhze Satstcs Tekphony oo itemals Heb
A super-powerful tool WM ECEXZLE A+920T L2 [EE QRAQAN ADB % ®

H&:l _ll Expression... (oo Apply

No. Time Source Destnation Protocol info
® 1 1 | 32 4.212570 192.168.0.10 192.168.0.16 TCP 71 52493 > 1lrp [PSH, ACK] Seq=69 Ack«201 win=l
Comes In a gLII and a ! 33 4,217705 192.168.0.16 192.168.0.10 TCP 104 1lrp > 52493 [PSH, ACK] Seq=201 Ack=86 wine3:
console version (tshark) 35 4.422590 192.168.0.10 192.168.0.16 TCp 54 52493 > 11rp [ACK] Seqm86 Ack=251 Win=16262

39 5.226386 192.168.0.10 192.168.0.16 TCP 71 52493 > 1lrp [PSH, ACK] Seq=B6 Ack=251 win=1i
‘ 40 5.231896 192.168.0.16 192.168.0.10 TCcP 104 1lrp > 52493 [PSH, ACK] Seq=251 Ack=103 win=

- 415.289642 192.168.0.16 192.168.0.10 MTTP 182 Continuation or non-HTTP traffic

42 5.435693 192.168.0.10 192.168.0.16 TCP 54 52493 > 1lrp [ACK] Seq=103 Ack=301 win=16250

* Is built on top of libpcap

* It understands virtually all

6 6.240647 192.168.0.10 .0. 71 52493 > 11rp [PSH, ACK] Seq=103 Ack=301 Win=:

7 6.245879 192.168.0.16 192.168.0.10 TCP 104 11rp > 52493 [PSH, ACK] Seq=301 Ack=120 Win=:

known network protocols e o I I

.253393 192.168.0.10 .168. 0. 71 52493 > 11rp [PSH, ACK] Seq=120 Ack=351 Wine:

52 7.259674 192.168.0.16 192.168.0.10 104 11rp > 52493 [PSH, ACK] Seqe351 Ack=137 Wine:

ri PaCket processmg at hlgh 54 7.462749 192.168.0.10 192.168.0.16 54 52493 > 11rp [ACK] Seq=137 Ack=401 Win=16225
56 7.749326 74.125.228.21 192.168.0.10 109 Application Data

speed is tricky, watch out

for dropped packets —>

60 7.845217 192.168.0.10 74.125.228.21 TCP 1484 [TCP segment of a reassembled PDU)
61 7.845237 192.168.0.10 74.125.228.21 TCP 1484 [TCP segment of a reassembled PDU]
62 7.845249 192.168.0.10 74.125.228.21 TLSVL 122 Application Data

nOt Seen does nOt mean no 63 7.845949 192.168.0.10 74.125.228.21 TLSV1 87 Application Data
64 7

.861892 74.125.228.21 192.168.0.10 TCcP 64 https > 50494 [ACK] Seq=56 Ack=1431 win=2058

received

3 a e ieen.n % _2..E.
10 00 a0 51 ec 40 00 40 06 67 01 c& "0 L@ g.......
20 00 Oa 00 50 c¢d 07 f5 3e T

INTERPRETING THE HEX DUMP

NETWORK BYTE ORDER

Low address High address

Address 0 1 2 3 4 5 6

Little-endian |Byte O |Byte 1 |Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6

Big-endian |Byte 7 |Byte 6 | Byte 5 | Byte 4 | Byte 3 | Byte 2 | Byte 1

Memory

Ox11 | Ox22 | Ox33 | Ox44 | Ox55 | Ox66 | Ox77
content

64 bit value on Little-endian 64 bit value on Big-endian

0x8877665544332211 0x1122334455667788

* Historically network byte order is big-endian
* In the 21st century almost all processors are little-endian
« POSIX has portable conversion functions (man htons)

e*htons;; hAtohs htonl: ntohl h |:"host . n: ...} network

NETWORK CARD NETWORK CARD

NETWORK TOOLS TO-KNOW

IPTABLES / NETFIL

—_ ———

{ PREROUTING) nontunneled

Table legend
lon ¢ .
connection tracking D Ster

|~

“Firewall” used for counting o I S
[o { POSTROUTING)

QO0S egress

Monitoring independent of
running application

- - —
e e . e

No copy from kernel space —>
efficient

filter

*) for ipvs tunneled over ipvé T
the nat table s traversed
only when the first packet
of the tunnel goes through destination NAT (*)

And packets going through
the "lo" rterface dont
traverse the PREROUTING
destination NAT bow

by

xkrd?dgouterspace. .dyndns.org
nonturneled deepstargulyssis.org

31.10. 2002
(last updated 14.04.200%)

LOCAL PROCESS

WIFI FOR DAQ?

NOT A GOOD IDEA

WiFi is a shared medium (like
the original Ethernet)

Bandwidth is erratic
Stability is poor

* Check latencies with ping, .
or throughput with iperf =

Your mileage may vary of

a~

course, if you're needs are far&'$

below the effective speed &

-

Standard eff. speed

802.11 g 20 Mbit/s
802.11 n 40 Mbit/s
802.11 ac 60 Mbit/s

source: www.speedguide.net

- .
~T. 8-

802.11b 2. Mbit/s®= - —

=

source: www.dumbblog.com

V|

‘O“ At »

=

-
-

http://www.dumbblog.com

FURTHER READING

* Best is simply to try out e &

* man-pages and wikipedia Q@
have practically all info which >

is needed 4
p

For book-worms there is
"Unix Network Programming,
Volume 1: The Sockets
Networking API (3rd
Edition)”

APPENDIX

THE CASE FOR CLUSTER-INTERCONNECTS
COST, COST AND COST

* Per unit of bandwidth
InfiniBand and OmniPath are
more cost-effective than
Ethernet (at least at the top-
speeds)

They tend also to use less
CPU power than the TCP/IP
stack (only relevant at speeds
> 10 Gbit/s)

Using them is *much* more
difficult in practice - believe
me - |'ve been there :-)

THE OFED
ANOTHER STACK

Subnet

= Sockets Clustered
Application PBoed || ‘ooces || vanous DB Access

Slock Access to Agminssatar
Level Diag Cpen A;p:;, AcDe2s MPis mg {Oracle Tox Manageman

Took SM {IEM DE2) 10gRAC) || HEEme Dstagram

: Subnet Manager
User Leval Agant

Ulel’ = - | Feformeace
APls InfireBand [OpenFabrics User Level | Verbs/AP| MARP| R-NIC Manager Agent

User Space P over InfriBand

Al LA R R R B L L LLLERE R LA L L LR LA AL A B B B L b b b b Rl b b b bR bl b Bl bl bl B bl bl Bl bl bl bl bl L b b b bl b b b bl L b

Kemef Space [T [Sookets Direct
Upper ; ; Fratocol
NFS-ROMA Chustar

Layer |
ye PolB ISDP‘ SRP ‘GER IRDS REC Fie Sys ; SCSI RDMA

Protocol

2L EELEREEELEEEREREE LR EERERE R EEREEEREEREREEEEEE R AR EEEERR R EERERERR R EEERERREEEEEERE R EEREREREREEEEEREREREREEELEEREEREELELERER.

I Y ISCSI RONA

Fratocol (Intiasor)

Comccbon Maﬂagﬂl’ Frotocol .:'.'“”:,.:
Absiraction (CMA)
Reiabe Catagram

i | Semvic
Mid-Layer - : . avice

Manager Manager Lsar Dinect ACOess
Frogrammng Lb

‘ C Host Channe
OpenFabrics Kernel Level Verbs 1 AP Agaptar

RONA NC

Comman Apps &
ACesch

InfiniBand| | Methods
for umeg
Hardware m . . . - - - M WARP

