
Time-of-Flight PET Detector development with SiPM

Functional Imaging – principle of operation

Functional imaging modality

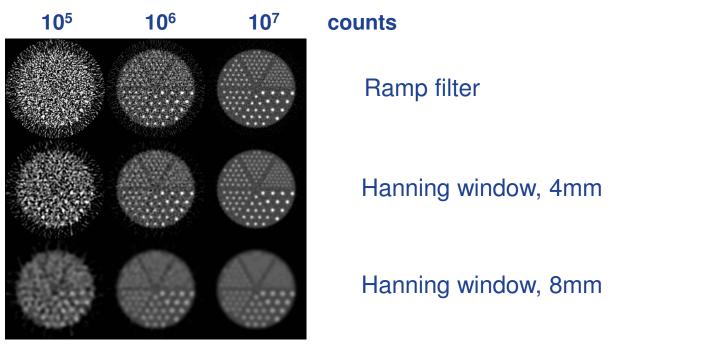
- physiological and biochemical processes

Signal emitting tracers injected into patient

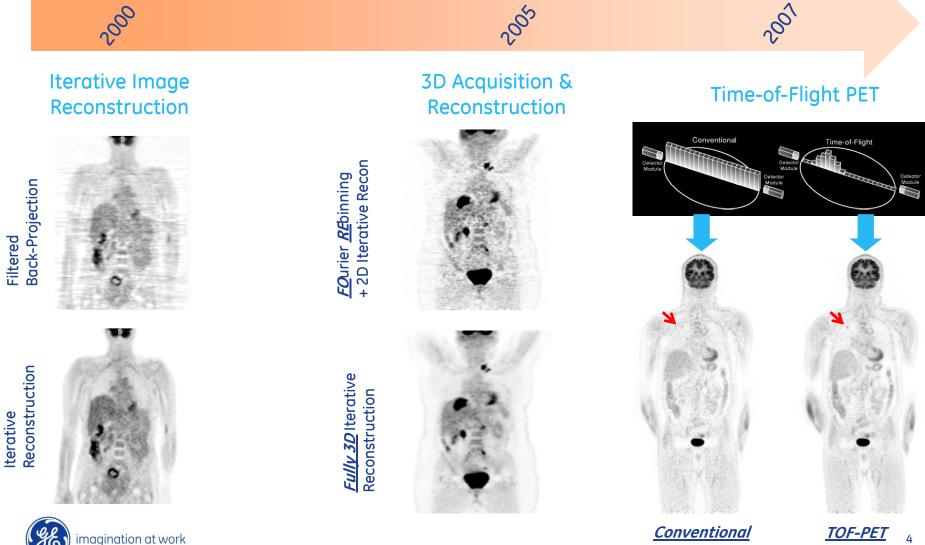
- compounds (like simple sugars) that participate in function

Scanner detects radiation signal

- detection of emitted radiation from positronelectron annihilation


Tomographic image reconstruction

- multiple views of projection data transformed to 2D/3D image


Count limited imaging

- Noise in PET images is dominated by the counting statistics of the coincidence events detected.
- Reduce noise in images by using a smoothing window on ramp filter in image reconstruction, at the cost of image resolution.

Progress in PET Image Quality

Time-of-Flight PET/CT is the standard

mCT 128 True V

Ingenuity TF 128

PMT based scanners, timing resolution ~ 500-550ps

Benefits of Time-of-Flight

When <u>all other things are equal</u>, a PET scanner using Time-of-Flight (TOF) produces better image quality than one without time-offlight.

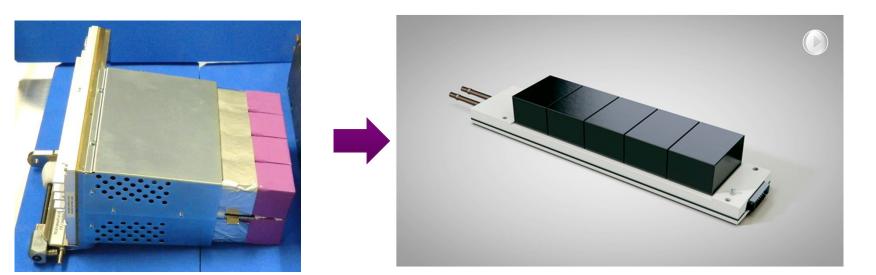
The amount of improvement is not easy to predict – it depends on many things.

The benefit is an improved Reconstructed "signal-to-noise" ratio.

The benefit depends critically on the *size of the part of the patient* being imaged.

Time-of-flight doesn't affect intrinsic spatial resolution.

Time-of-flight does Not Improve Count Rate Performance


Brownell concludes in 1969 that with the then state-of-the-art scintillators and photomultiplier tubes, **TOF was useful for elephants**, but not yet humans.

"TOF scanners are just entering clinical use, it will be probably several years until they are widely available. It can be assumed that over the next few years the timing resolution will continue to improve and will lead to better image quality for heavy patients and shorter imaging times as well. "

G. Muehllehner and J.Karp "Positron emission tomography" Phys. Med. Biol. 51 (2006) R117–R137

2012: Transformation of PET Detectors

40 year old technology → One of last remaining vacuum tube based detector

Limited performance Detection efficiency Average ToF: 550 ps Magnetic sensitivity Bulky

magination at work

Silicon Photomultiplier: new solid state photosensor

Superior performance Excellent image quality Best in class ToF: ~250-400 ps Ideal for PET-MR

State-of-the-art ToF PET Scanners

Silicon Photo-Multiplier (SiPM) can be fabricated from small silicon sub-pixels to replace PMTs making them attractive for PET+MR and TOF-PET:

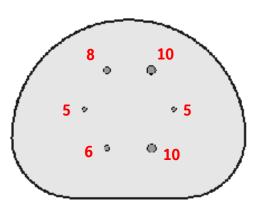
- fast, low-jitter time response
- magnetic field immunity
- small form-factor

Technical challenges:

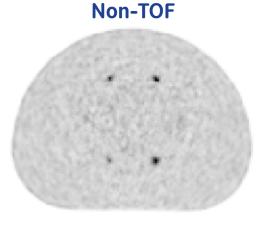
- Readout circuits/ASIC development
- Multiplexing options
- Temperature stabilization
- Handling multi-crystal events
- MR compatible architecture

Signa PET/MR

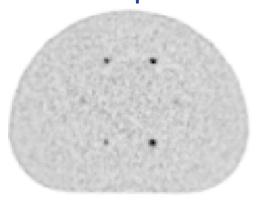
Vereos


TOF 380ps

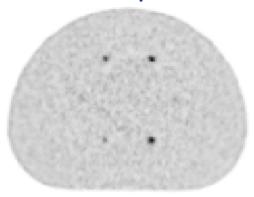
TOF 345ps

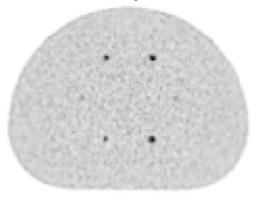

Clear benefits of using ToF

Simulated NEMA IQ Phantom

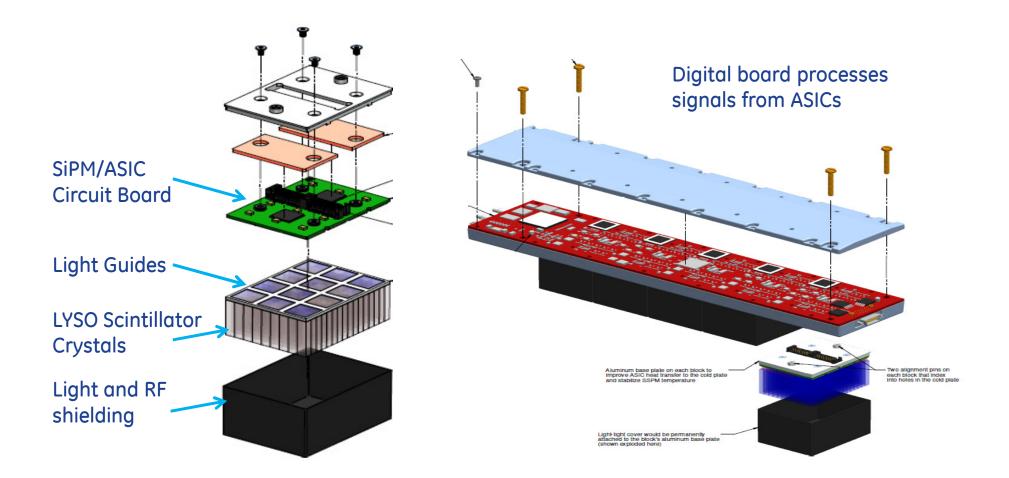


Simulated counts: 180M Contrast: 4:1


OSEMS: 4 iterations, 28 subsets TOFOSEMS: 2 iterations, 28 subsets Recon FOV: 600mm on 256 pixel grid


380ps

550ps

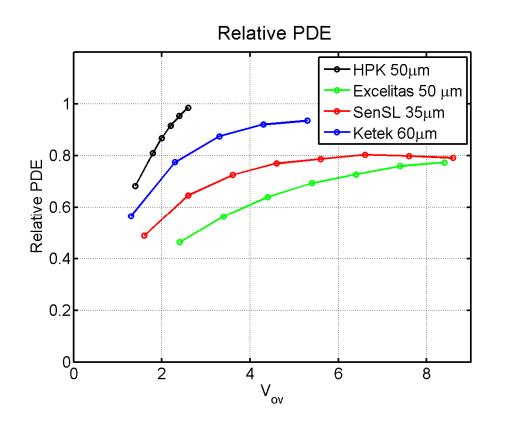


200ps

PET/MR module Concept

Timing resolution of PET detectorphoto sensor requirements

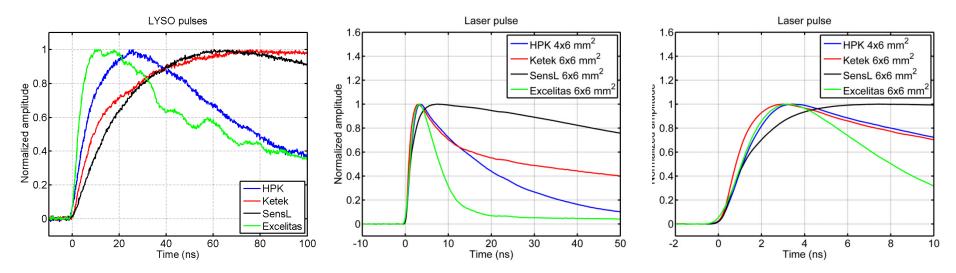
SiPM from different vendors have a wide range of PDE, dark counts, pulse shape and other parameters critical for timing performance in PET application


Critical parameters for timing resolution:

- •PDE
- •SPE pulse shape
- •Transit Time Delay (across SiPM) and SPAD jitter
- •Dark count (for block multiplexing)
- •Gain
- •Optical cross talk and after pulses

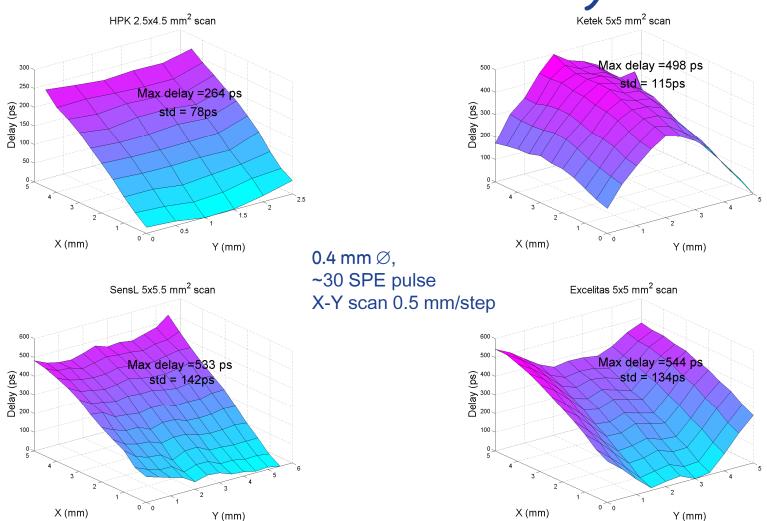
We measure Coincidence Resolving Time (CRT) of LYSO/SiPM PET detectors at identical conditions

Relative PDE

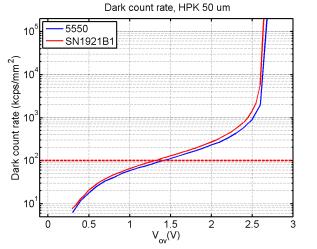

- Weak laser pulse (<1 spe), uniformly illuminate SiPM
- Measure N(0)
- Measure N_{dark}
- Calculate* n_{pe}

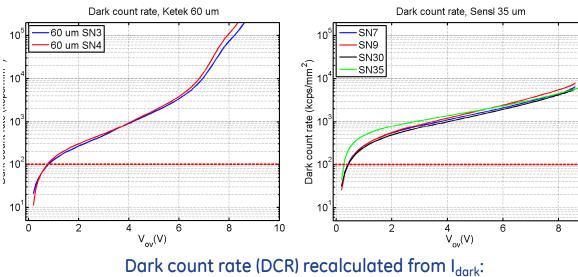
$$n_{pe} = -ln\left(\frac{N_0}{N_{total}}\right) + ln\left(\frac{N_0^{dark}}{N_{total}^{dark}}\right)$$

Systematic error ~5% due to misalignment


Pulse shapes

	HPK 3x3/4x6 mm²	SensL 6x6mm²	Ketek 3x3/6x6mm²	Excelitas 3x3/6x6mm²
Rise time 20-80%	0.7/1.4 ns	2ns	0.5/1.0 ns	0.5/1.3ns
$\tau_{int} = C_d * R_q$	11 ns	96 ns	180ns	70/100 ns
R _q	126 kΩ	660 kΩ	~420kΩ	630/1000 kΩ
% Fast component	-	-	10%	20-50%

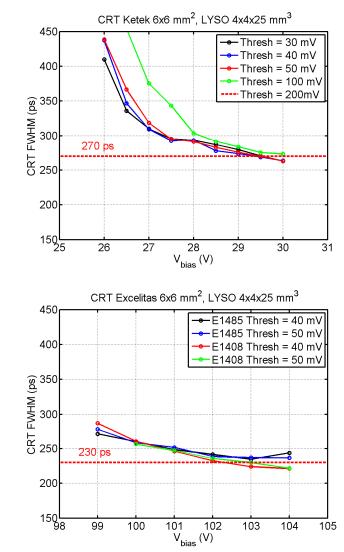

Transit time delay



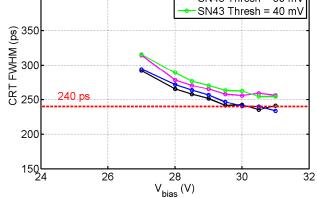
Delay ~100 ps/mm (50 ps/mm for HPK)

SiPM dark counts

Dark count rate, Excelitas 50 um


DCR includes after pulses and crosstalk

 $DCR = I_{dark}/C_{diode}/V_{ov}$


	НРК	SensL	Ketek	Excelitas
Vbr	~71V	~23.4V	~22.8V	~95V
Maximum V _{ov}	2.4V	6 V	5V	7V
Dark Counts kcps/mm² @ max V _{ov}	400	2000	2000	200
"Gain" ~ C _{diode}	85 fF	145 fF	380 fF	95fF

CRT measurements - large SiPM, long crystal

CRT HPK 4x6 mm², LYSO 4x4x25 mm³ 450 ← Thresh = 40 mV 400 (sd) 350 300 250 250 260 ps 200 150 72.2 72.4 72.6 72.8 73 73.2 73.4 73.6 V_{bias}(V) CRT SensL 6x6 mm² 35um, LYSO 4x4x25 mm³ 450 400 -SN43 Thresh = 30 mV SN43 Thresh = 40 mV

imagination at work

SiPM benchmark performance

		HPK*, 50 um	SensL- SB 35um	Ketek 60um	Excelitas
SiPM Device Pixel Size (mm ²)		3x3 ; 4x6	3x3 ; 6x6	3x3; 6x6	3x3; 6x6
Timing resolution	3x3x10 mm ³ LYSO – small SiPM	195 ps	180 ps	200 ps	170 ps
	3x3x10 mm ³ LYSO – large SiPM	230 ps	215 ps	210 ps	180 ps
	4x4x25 mm ³ LYSO - large SiPM	260 ps	240 ps	270 ps	230 ps
LYSO/SiPM pulse shape 3*τ (SPE pulse shape and after pulsing)		220 ns	450 ns	~1000 ns	250 ns
Photo Detection Efficiency (relative PDE)		1	0.8	0.95	0.75
V _{ov} range		2.4 V	6 V	5 V	7 V
Dark Counts (kcps/mm²)		400	2000	2000	200

- Promising sub 300-ps ToF performance with SiPM
- Continuing improvements in SiPM from all vendors PDE, dark current, after-pulses, TTD, packaging etc

Thank You

