Understanding and modelling of the distributed infrastructure & computing models

With H-LHC in mind

Input from Daniele and Eric

- Which I tried to integrate
- Attached to the Indico page

From the Agenda

- How well do we understand our current workflows, their behavior and resource needs?
 - with respect to storage, remote access, networks, CPU, memory
 - How well do we understand the behavior of our current infrastructure?
 - What can we do to improve this understanding in an experiment independent way?
 - how independent can this be?
- What has been done already in experiments?
- What would be desirable? Ability to model ideas of infrastructure to understand performance, costs, etc.
- What is potentially common across experiments? What is specific?
- Can we derive a cost model for the infrastructure to explain the full costs of computing and the relative costs of each component?

Information gathering (++)

- Monitoring data very fine grained for workflows and infrastructure
 - xrootd monitoring
 - PerfSonar
 - Data management monitoring
 - Fabric monitoring
 - Dashboards
- Performance analysis tools
 - Detailed traces
 - Memory, cpu, storage etc.
- Analytics
 - Significant investment (people and hardware) using advanced tools
 - Machine learning etc.

Examples

Step	Setup	RAWtoESD*	RAWtoESD validation	ESDtoAOD setup	ESDtoAOD*	ESDtoAOD validation	DQHistogram Merge setup	DQHistogram Merge	DQHistogram Merge valid.
Wall time (*MP)	6m 26s	2h 47m 26s	6m 29s	7m 56s	1h 0m 54s	4m 13s	19 s	2m 37s	1 s
CPU time, efficiency	N/A	10h 20m 56s 92.7%	N/A	N/A	2h 34m 16s 63.3%	N/A	N/A	29s 18.5%	N/A

Did we expect this?

Do we know why this workflow behaves this way (quantitatively)?

What would change if we double/half the network/memory?

ESDtoDPD setup	ESDtoDPD*	POOLMerge Athena setup	POOLMerge Athena	ESDtoDPD validation	POOLMerge file validation	Finalisation
3m 6s	16m 22s	1m 2s	32m 58s	5m 7s	33m 15s	8s
N/A	20m 49s 31.8%	N/A	5m 18s 16.1%	N/A	N/A	N/A

Examples: Tracking Memory at the Nanoscale

Examples: More

Incredible detailed information. Why do we see these patterns. Do we expect them? What is the impact on performance?

However....

- When things change we are often surprised:
 - CERN/Wigner performance differences
 - Virtualization performance differences
 - Move to multi threaded processing
- We are very good at noticing and measuring effects
 - Good monitoring and logging of "all and every thing"
- We are bad (quantitative) at answering: What if?
 - Can't predict well the effects of changes (workflows, infrastructure...)
 - Can't easily identify the main reasons and interdependencies
 - If more than one thing changes at the same time (as it always does)
 - CERN-Wigner extension, single core → multi core, Spinning disks/SSDs
- Not surprisingly given the complexity of the environment....
 - Very divers, many factors driving efficiency and performance.
 - Large phase space

Knowledge / Understanding

- Understanding can be seen as a model based form of data compression *
 - understanding something means being able to figure out a simple set of rules that explains it.
 - Think about how the model of a rotating earth allows to predict data as brightness, temperature, and atmospheric composition during a day

What we could use Models for

- Understanding better the existing system
- Document and represent what we think that we have understood
 - Comparing measurements and model
- Spot gaps in our understanding
 - Guide analysis of infrastructure and workflows
- Exploring alternative approaches
 - Workflows and Infrastructures
 - More quickly and more cheaply
- Guide purchase decisions → meaningful cost model
 - When a cost model is included
 - X1 cores + Y1 disks + Z1 MB/core + R1 MB network will me n events/hour of workflow D per Euro

What kind of Model(s) might be useful?

- Model in the sense of "simulation" of the infrastructure elements and their interaction
 - Discrete Event Simulations (used in real time systems and networks)
 - Hybrids
 - Like SimGrid (used for HPC, Grid, Cloud ..)
- Model in the sense of an analytical model describing the behavior of infrastructure and applications
 - Could be a set of rules to do back of the envelope calculations
 - In the most basic case an Excel table
 - Probably several already around
- In HPC it is standard practice to use modeling of workloads and machines during the design phase
 - Maybe we can profit from their expertise

Cost model?

- What is the metric that we want to look at?
 - HepSpec/Watt?
 - HepSpec/CHF?
 - Workflow-A/B/C/D events per week /CHF?
 - Best in a mixture representing our needs
 -
- Goal: Understand better on what we should spent our budgets on
 - Answer questions like: Is it better to move to from 2 to 3.5 GB memory per core and buy 10% less disk?
 - Needs good model for cost prediction

• Complications:

- How do we account for human effort?
 - Cloud, many/few sites, etc.
- Budgets are often not fluid
- Funding agencies are driven by additional/different motivations
 - But they are not brain dead and having quantitative arguments might help

Common/Specific

Common:

- Models of the infrastructure
 - Global, local, generic storage....
- *Framework* to model experiment workflows
- Tools and "survey program" to analyze the workflows and their impact on the infrastructure
 - Like the FOM tool (HSF) and the allocation tracer
- Metric to express the parameters of models

Specific:

- Models for specific storage systems/sites
- The analysis and modeling of the different workflows
 - Using common tools as far as possible
- Comparing model and monitoring data for a specific experiment/site
- Exploration of new concepts

What happened to MONARC?

- LCG Modeling effort in the late 1990s early 2000
- Guided the design towards the hierarchical T0/T1/T2 mdel
- Then was used very little
- Was done before we had any infrastructure or established workflows
 - No rapid feedback loop
 - WLCG's focus quickly shifted to make it work all....
- Why not the obvious it as a starting point?
 - Tech evolved
 - Infrastructure evolved

First Steps?

Mostly speculative ...

- Do not start a large (EC funded) project!
- Many different ongoing activities
 - Concurrency Forum
 - HSF
 - Experiments
 - Like RUCIO modeling based on SimGrid
- > First step: collect and document ongoing activities
- Modeling needs a home: WLCG / HSF?
 - WLCG better connection to the infrastructure
 - HSF better linked with the workflows/applications
- Start with a very primitive model!
 - Maybe estimating on paper what the theoretical best efficiency of workflows could be
 - Academic exercise, but will collect input data that can be re-used later.
 - Be aware of the limitation of models! 20% precision == outstanding
 - Don't get lost in details (packet level modeling of WLCG