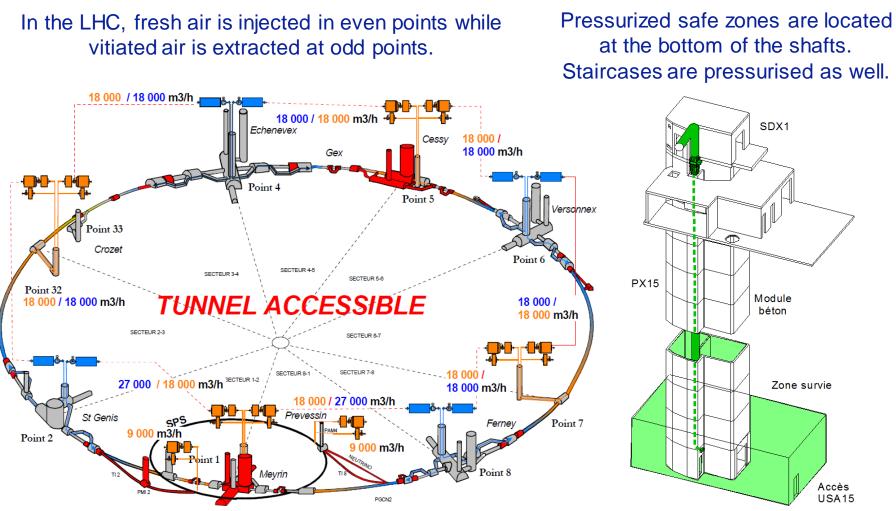


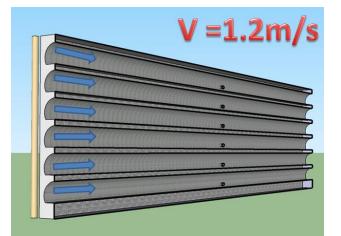
DGS/SEE Seminar on Fire Protection for Physics Research Facilities 7 and 8 October 2015 CERN

A simplified approach to evacuation modelling in research facilities at CERN

S. La Mendola DGS/SEE/XP

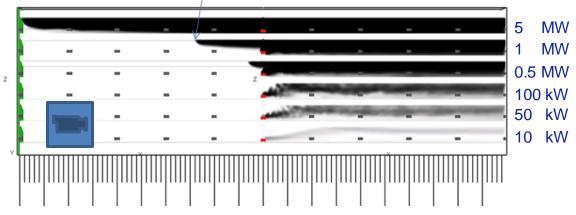

LS1 and definition of maximum occupancy

- The first long shutdown of LHC (LS1) had a very busy schedule to carry out a large number of works keeping the downtime as short as possible.
- Maximum number of occupants allowed in the different LHC zones had to be defined.
- Existing approach, dating back to 2002, was revised for this occasion.


LHC air management

In the LHC, the evacuation takes place through the lifts

Characterization of fire hazard in tunnels

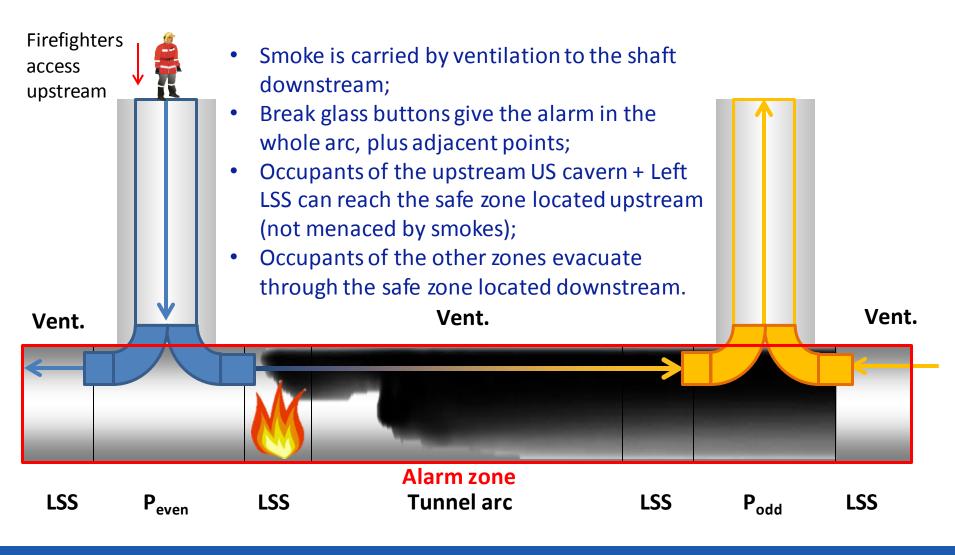

1.2m/s Smoke temperature

5Mw, At 15 minutes, 300C along the

1Mw, At 15 minutes, 150C along the

ceiling

ceiling



Main results

- Back layering reaches an equilibrium distance;
- Stratification downstream is lost very early;
- Air velocity downstream slows down to ventilation speed ;
- Gas temperature reaches a maximum of almost 300 °C (5 MW fire), but after 200 m it goes down to ≈ 50 °C;
- Decrease of visibility to almost zero in smokes;
- O2 concentration down to 16.5 % and CO2 up to 3.2% (5 MW fire).

Worst-case scenario: fire in the upstream LSS

Simplified (Excel) model based on a balance equation

At the end of time step i+1, the number of occupants inside the safe zone is calculated considering that:

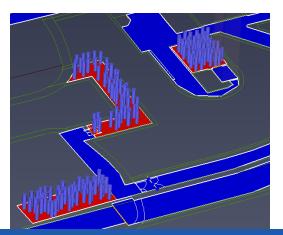
$$n^{i+1} = n^i + n_{in}^{i+1} - n_{out}^{i+1}$$

The inflow is the sum of occupants coming from the:

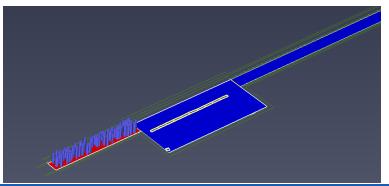
- tunnel arc and
- experimental caverns.

The outflow is calculated taking into account the lifts characteristics (capacity and time required for a round trip).

Х	<u>⊢</u> 5 ° C ∓				N	lew assess
F	ILE HOME INSERT PAGE LAYOUT	FORM	IULAS DA	TA REVIEV	V VIEW	ADD
	Calibri - 11 - A A	· ≡ ≡	≡ ≫·•	F Wrap Text	:	Number
Pa	ste 💉 B I 🛛 - 🖾 - 🛆 - 🗛	= =	≣₩≣	🚍 Merge &	Center 👻	∽ ∾
Cli	pboard 😱 🛛 Font 🗆	5	Aligni	nent	Fa	Nu
D	2 • : × ✓ fx ==Fi	(C2≻270:IE	(\$B\$5*(C2-2)	70)<=\$B\$1;\$B	\$5:0):0)+IE	
						(
_	A	В	C	D	E	
1	N. Occ in tunnel sector j	100	Time [s]	SZInflowj	SZ Inflow	
2	Tunnel sector j length [m]	2700	0	0.000	0.000	0.
3	N. Occ / 100 m j	4	1	0.000	0.000	0.
4	Occ. j Distance [m]	27	2	0.000	0.000	0.
5	Tunnel j occ. Inflow [occ/s]	0.052	3	0.000	0.000	0.
6	N. Occ in tunnel sector j+1	0	4	0.000	0.000	0.
7	Tunnel sector j+1 length [m]	1350	5	0.000	0.000	0.
8	N. Occ / 100 m j+1	0	6	0.000	0.000	0.
9	Occ. J+1 Distance [m]	0	7	0.000	0.000	0.
10	Tunnel j+1 occ. Inflow [occ/min]	0.0	8	140 -		
11	N. Occ (Point + LSS)	35	9			
12	01 113	1.4	10	120 -		
13	Walking speed [km/h]	5	11	100 -		
14	Lift Capac.	13	12			
15	Lift time [min]	2	13	08 [J]		
16	Lift acc. Time [s]	6	14	L L L		
17		2,5	15	<u></u>	_// '	
	Lift travel [m]	90.01	16	40	_/'	
19	Doors opening, charging/disch. Time [s]	0	17		ר /ר	
20	Lift first trip delay [min]	1	18	20 -		
21	Evac. Time (from tunnel) [min]	32	19			
22	Point 5 SR nominal capacity (3 occ./m2)	63	20	o +		
23	CMS occupants	60	21	0		500

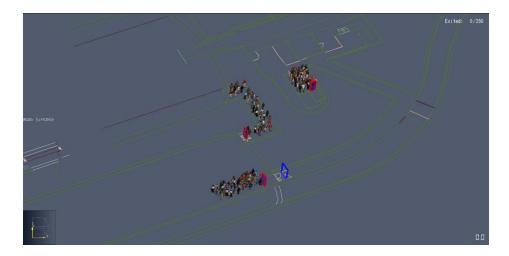


Advanced avatar-based evacuation model (Pathfinder)

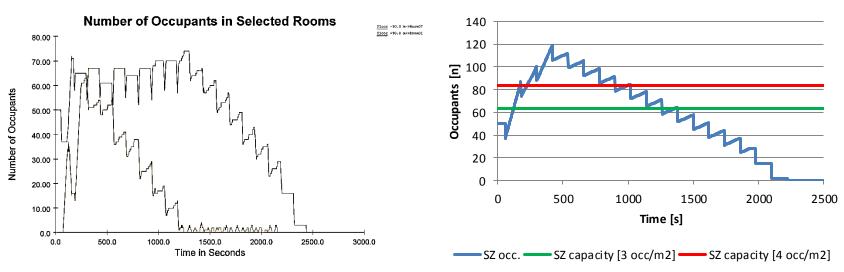


Bypass, Long Straight Sections and CMS experiment model

50 occ. UJ56 + 100 occ. CMS (50 from UXC [60-120] s and 50 from USC [180-240] s



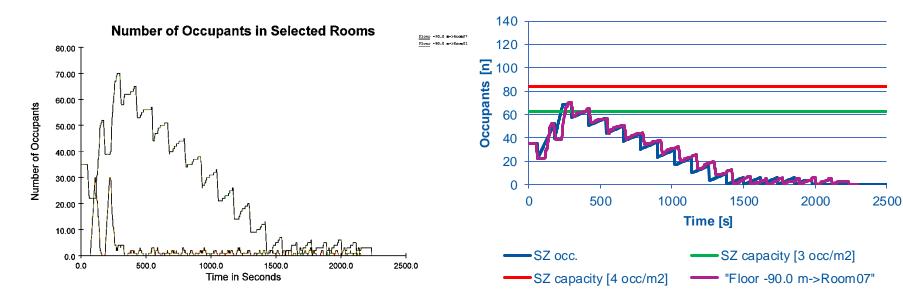
100 occupants tunnel sector, door flow limited at 3.1 pers/min



Comparison: Avatar-based vs simplified models

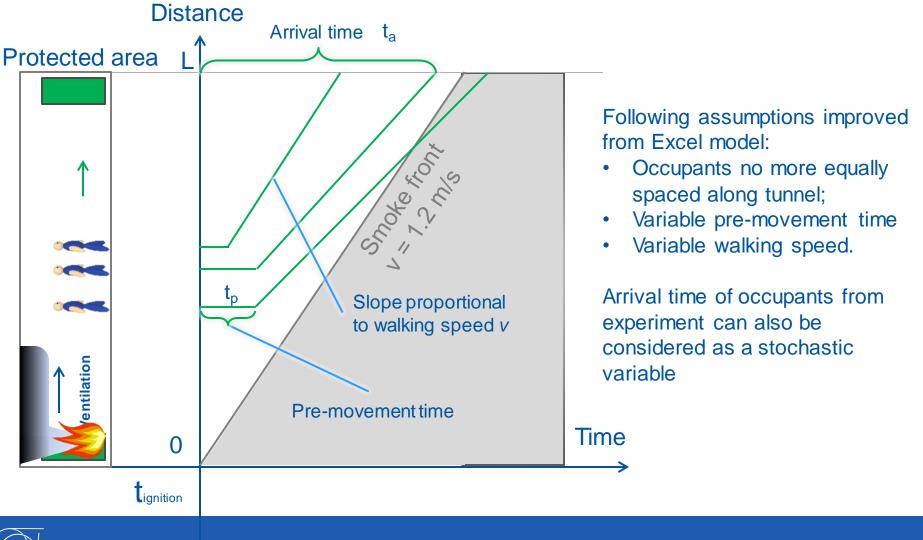
Key results

- Maximum occupancy of US 56: 74 persons => 3.5 occ/m²
- Max n. Of people waiting outside the safe zone: 64
- As expected, occ. density does not increase indefinitely in the avatar-based model


CMS: Proposal of occupants reduction (PM54 lift unavailable)

N. Occ in tunnel sector j	100
Tunnel sector j length [m]	2700
N. Occ / 100 m j	4
Occ. j Distance [m]	27
Tunnel j occ. Inflow [occ/s]	0.052
N. Occ in tunnel sector j+1	0
Tunnel sector j+1 length [m]	1350
N. Occ / 100 m j+1	0
Occ. J+1 Distance [m]	0
Tunnel j+1 occ. Inflow [occ/min]	0.0
N. Occ (Point + LSS)	35
Walking speed [m/s]	1.4
Walking speed [km/h]	5

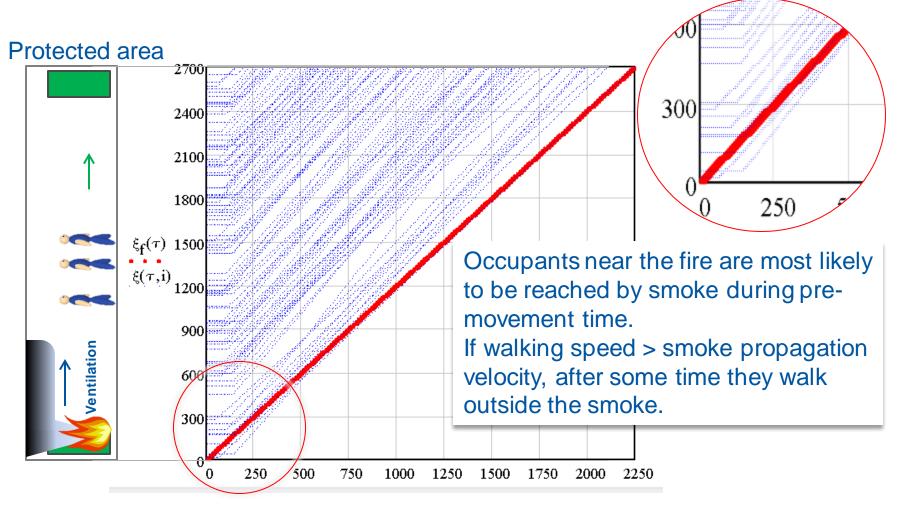
Lift Capac.	13
Lift time [min]	2
Lift acc. Time [s]	6
Lift max. Vel [m/s]	2.5
Lift travel [m]	90.01
Doors opening, charging/disch. Time [s]	0
Lift first trip delay [min]	1
Evac. Time (from tunnel) [min]	32
Evac. Time (from tunnel) [min] Point 5 SR nominal capacity (3 occ./m2)	32 63
Point 5 SR nominal capacity (3 occ./m2)	63
Point 5 SR nominal capacity (3 occ./m2) CMS occupants (x2)	63 30
Point 5 SR nominal capacity (3 occ./m2) CMS occupants (x2) Start time [s]	63 30 60


In case of unavailability of the PM 54 lift, a reduction of the occupants number is necessary.

Occupants machine side: 35 Occupants of the experiment: 60

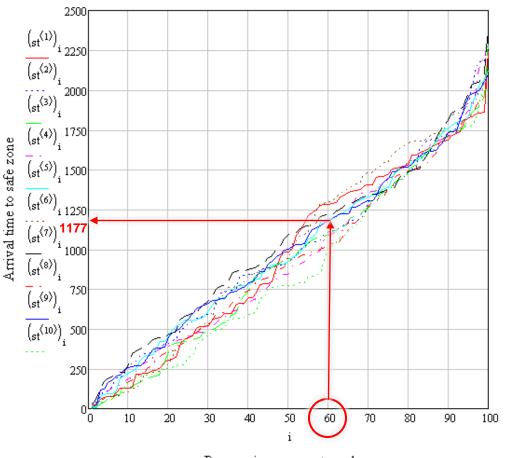
A Monte Carlo approach to refine the simplified model Basic kinematics

A Monte Carlo approach to refine the simplified model Assumptions for stochastic input variables


$$t_a = t_p + \frac{L - x}{v}$$

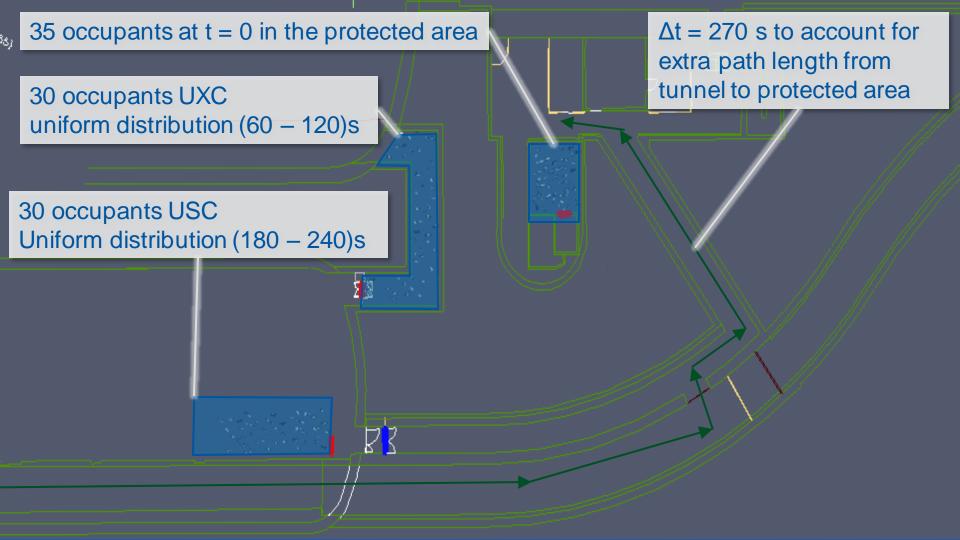
Symbol	Quantity	PDF.	μ	CV (σ/μ)	Lower Limit	Upper Limit
t _p	Pre-movement time	Normal	60 / 0 s	0.3	0	h
x	Initial position	Uniform	L/2	$L^{2}/12$	0	L
V	Walking speed	Normal	1.4 m/s	0.1	1.0	1.8
L	Length of tunnel arc	Deterministic L = 2700 m				

*t*_a is the arrival time to the safe zone of the *i*-th occupant



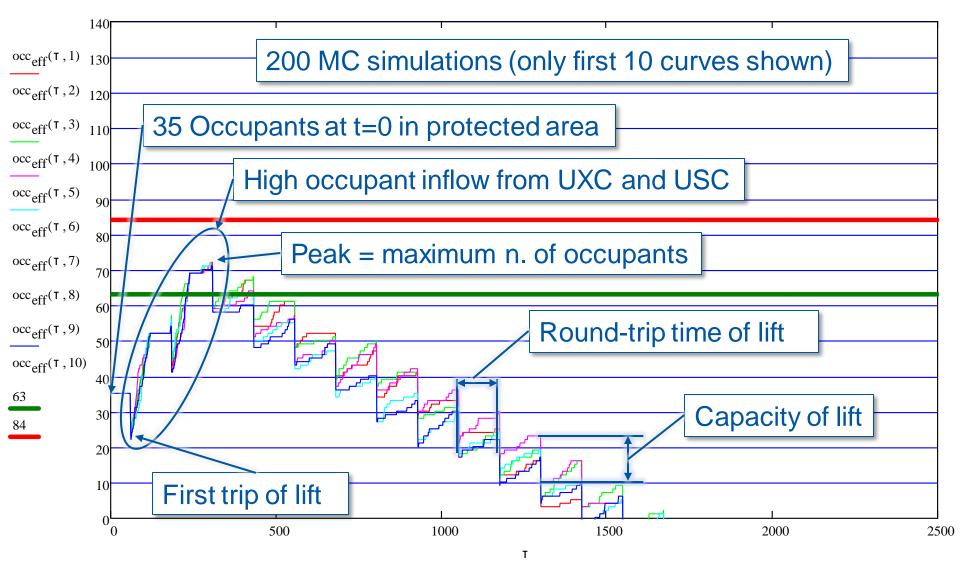
Motion of occupants vs time for a given MC simulation

Arrival times of occupants to safe zone


Progressive occupant number

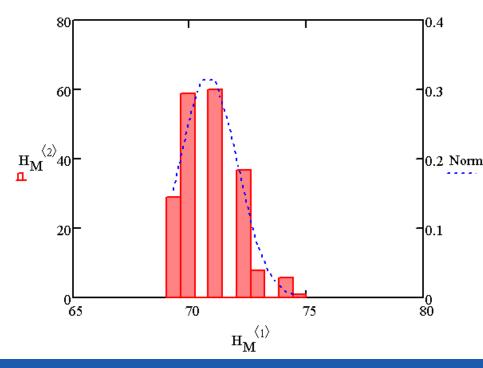
- 100 occupants assumed in the tunnel arc;
- 200 MC simulations (first 10 curves shown)

For example: The sixtieth occupant in simulation n. 9 enters the safe zone at t = 1177 s



Additional assumptions

Occupants in protected area vs time



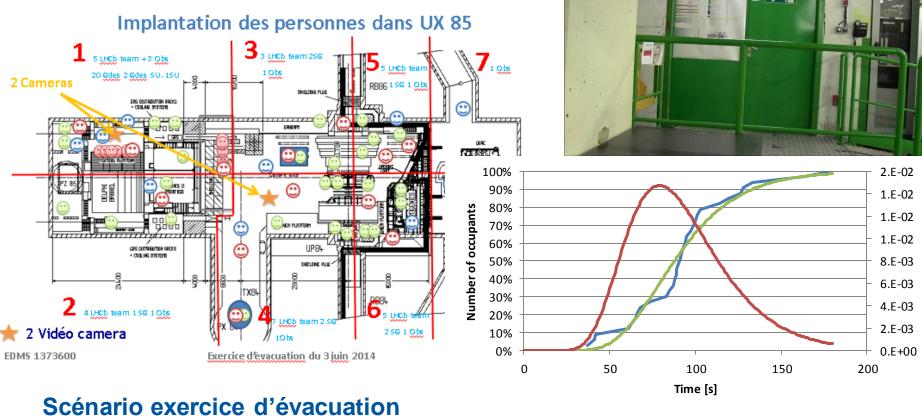
Histogram and fitting for *n_{max}*

Considering n_{max} as a stochastic variable we can calculate over the 200 MC simulations:

- mean value $\mu = 70.79;$
- standard deviation $\sigma = 1.235$ (CV = 0.017) and fit the histogram to a normal distribution.

If we fix an exceedance probability (e.g. 1%) we can calculate the n_{max} at 99% as:

$$n_{max,99\%} = \Phi^{-1}(0.99) = 74$$


Where Φ^{-1} is the inverse cumulative normal distribution.

Further improvement:

defining arrival time of experiments from fire drills data

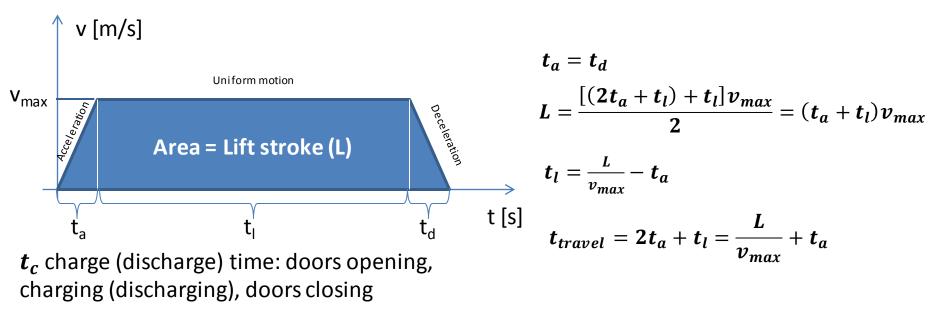
Scenario

Occ. In.

UX 85 LHCb EDMS 1373600

08/10/2015

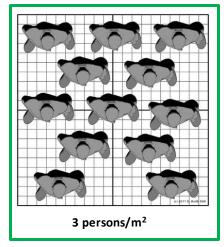
Lognormal Cumulated

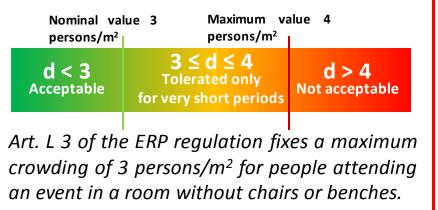

Lognormal pdf

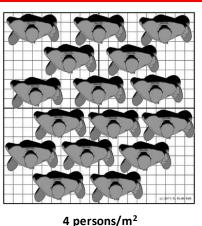
Questions?

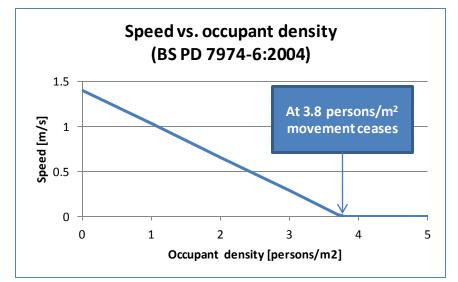
Thank you for your attention!

Lift round trip travel calculation




$$t_{round trip} = 2(t_{travel} + t_c)$$


Lift	Capacity [n. occ.]	L [m]	v _{max} [m/s]	t _{a,d} [s]	t _{travel} [s]	t _c [s]	t _{round trip} [s]
PM56	13	90.01	2.5	6	84	20	124



Maximum admissible crowding in safe zones

Point	Underground zone	Nominal max occupants n. (3 pp/m ²)		
5	US56	63		

From the study "LHC Evacuation Assessment for LS1", EDMS 1246565

