

DGS-SEE SEMINAR ON FIRE PROTECTION FOR PHYSICS RESEARCH FACILITIES 07-08 OCTOBER 2015 CERN

CREATING A CABLE MATERIAL FOR FIRE SIMULATION – FIRST STEPS

TRISTAN HEHNEN

Inhalt

- Einleitung
- Ausgangspunkt
 - Kabelbrandmodelleam CERN
 - CHRISTIFIRE Programm
 - FIPEC Programm
 - Brandversuche
 - Kabel-/ elektrische Installationen
- Bisher durchgeführte Arbeit
 - Micro-Combustion Calorimetry
 - Kabelmaterial
 - Cone Calorimetry
 - Cone Simulation
- Ausblick
- Literatur

Table of contents

- Introduction
 - Introduction
 - Aim
 - Starting ideas
- Cable material first steps
 - Micro-Combustion Calorimetry
 - Cone Calorimetry
- Future steps
 - Prepared models

Introduction

Introduction

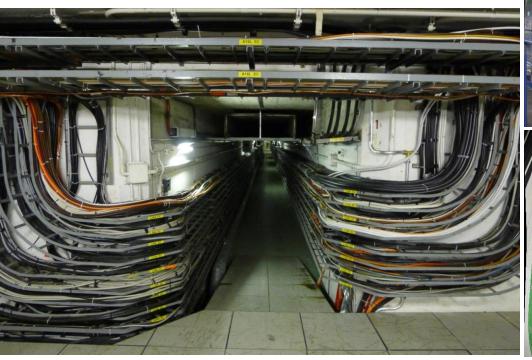
Bundesministerium für Bildung und Forschung

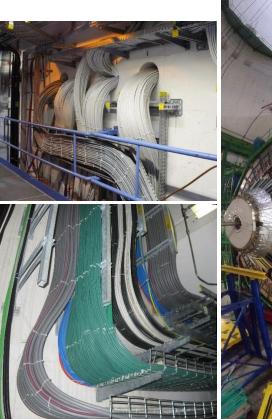
- Member of the Doctoral Student Programme at CERN
- Work supported by the Wolfgang-Gentner-Programme of the German Federal Ministry of Education and Research (BMBF)

Supervisor: Saverio La Mendola

BERGISCHE UNIVERSITÄT WUPPERTAL

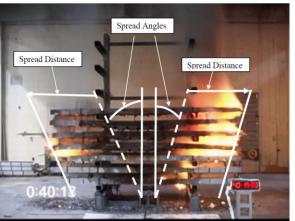
- Doctoral student at the Bergische Universität Wuppertal
- Department: Computer Simulation for Fire Safety and Pedestrian Traffic

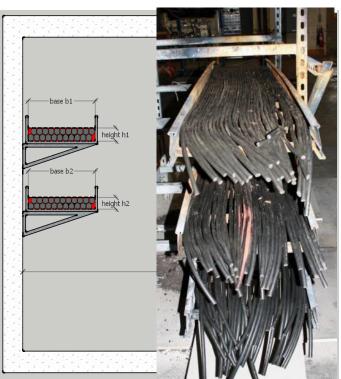

Supervisor: Armin Seyfried Lukas Arnold


Duration of the doctoral programm: from Nov. 2014 to Nov. 2017

Aim

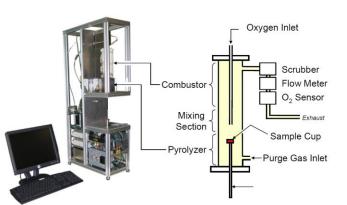
Investigate fire behaviour of electrical equipment
Cable trays first, maybe later cabinets and their interconnection
Create simple model(s) to estimate fire propagation

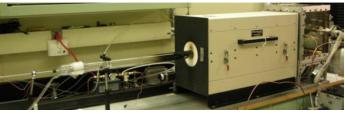


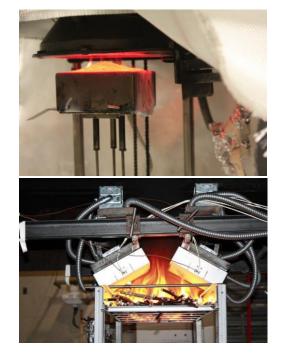


Starting ideas Cable fire models at CERN

- Work had been done by Fabio Corsanego DGS/SEE, based on the CHRISTIFIRE project conducted by U.S.NRC.
- Conservative and simple model for fire load estimation of cables inside a tunnel
- Guidelines for design fires, simplified the FLASH-CAT code into an Excel-sheet

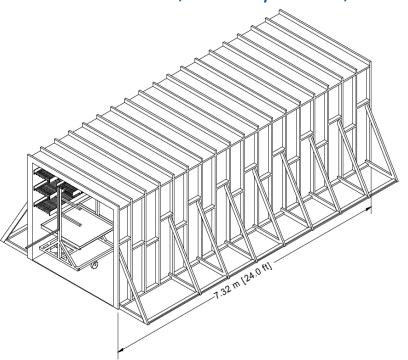



Picture: CHRISTIFIRE, phase 1

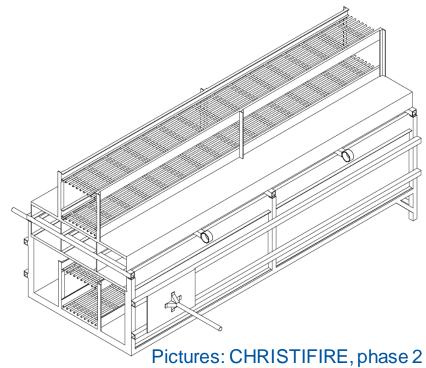


Starting ideas CHRISTIFIRE programme

- Cable Heat Release, Ignition, and Spread in Tray Installations During Fire (CHRISTIFIRE)
- Plenty of data recorded, able to be utilised in simulations

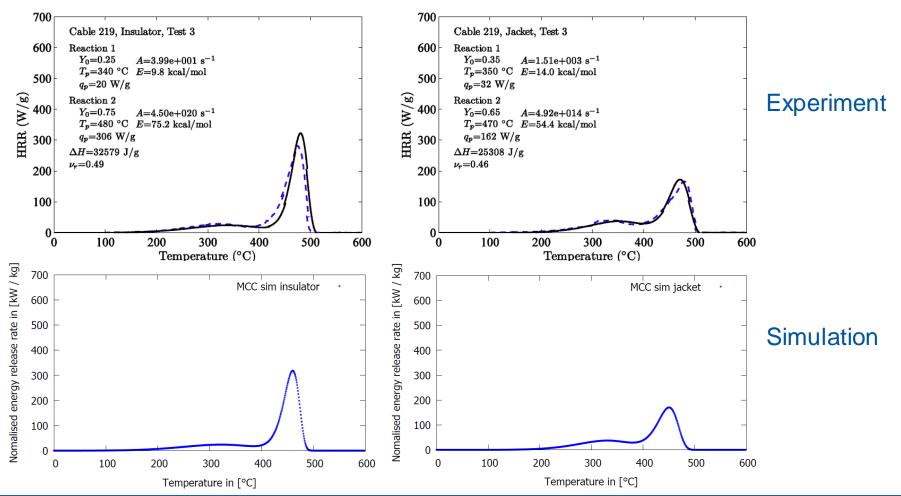


Pictures: CHRISTIFIRE, phase 1



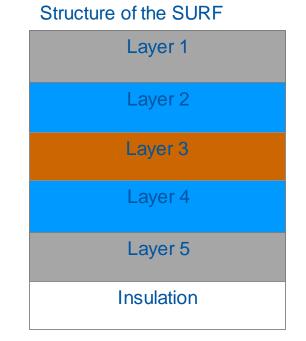
Strating ideas CHRISTIFIRE programme

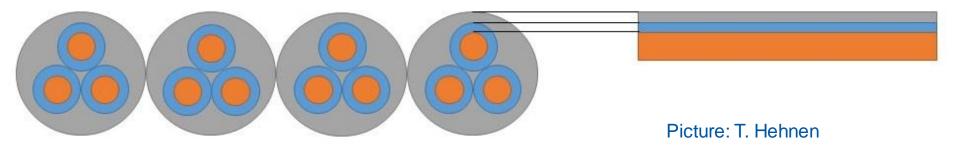
- Phase 2:
 - Additional 23 cables
 - Small- and full-scale
 - Corridor (2.4 m * 2.4 m * 7.3 m), up to four trays
 - Shaft, two trays inside, two trays outside



Cable material first steps

Cable material first steps Micro-Combustion Calorimetry

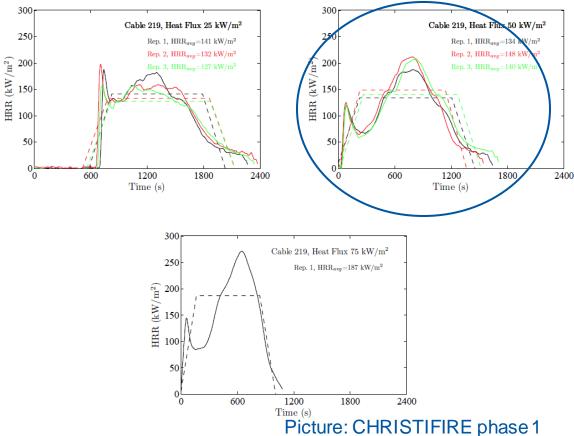

• MCC with CHRISTIFIRE data (cable #219); Simulation from FDS Userguide



Cable material first steps Cable material

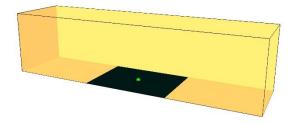
- Material #219 to FDS
- Projection of the circular cross section to a rectangle, width = cable diameter
 - Layer 1 and 5: ~3,1 mm
 - Layer 2 and 4: ~1,4 mm
 - Layer 3 : ~0.1 mm
 - BACKING=`INSULATED`

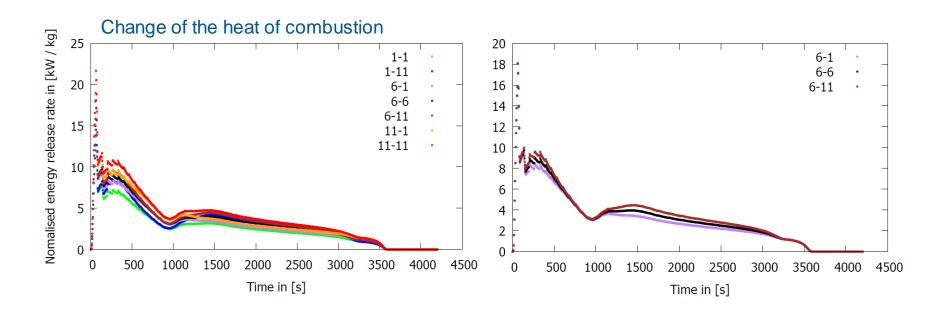
Illustration: How to represent the cables?

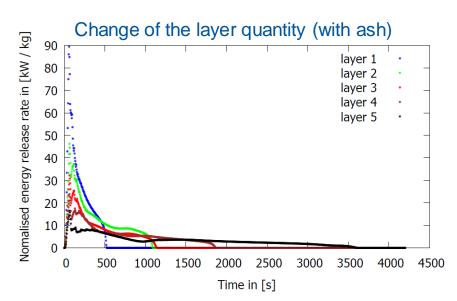


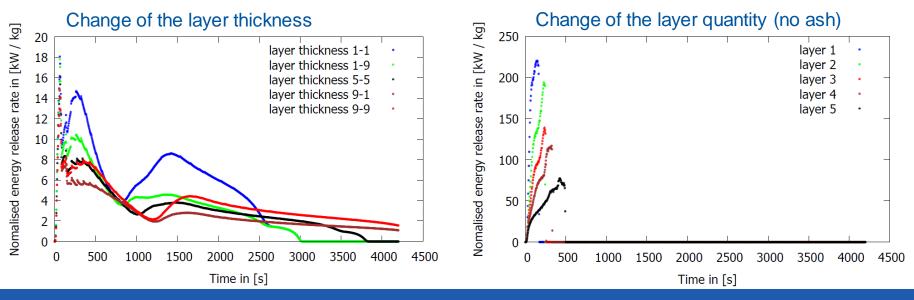
Cable material first steps Cone Calorimetry

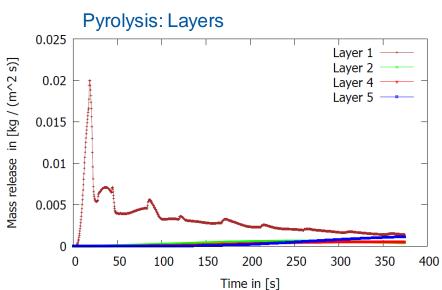
- cable #219 in Cone test
- Adjust material parameters to fit simulation to experimental results

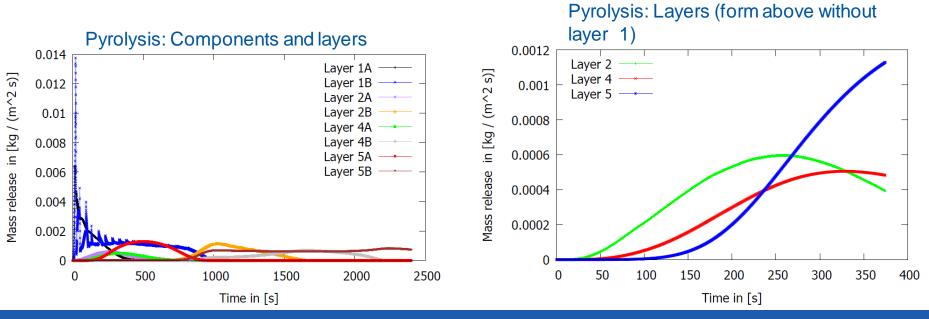


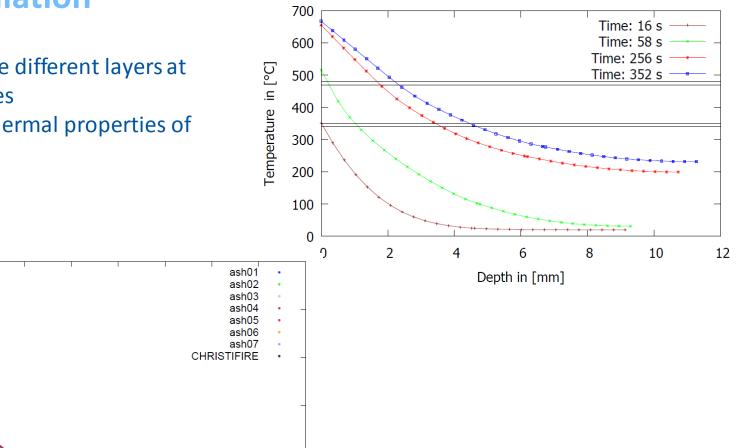



- Variation of the heat of combustion, ± 20 %
- Simulation in simplified Cone (from FDS Userguide)
- Parameter from CHRISTIFIRE in black

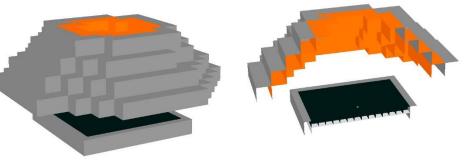


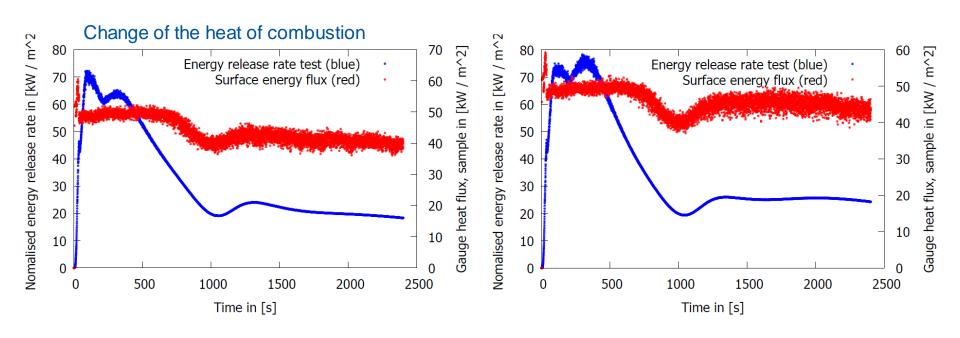

- Variation of the layer quantity, starting with top layer
- Variation of the layer thickness, ± 20 %;
- Parameter from CHRISTIFIRE in black




- Pyrolysis monitored per layer
- Layers 1-5, layer 3 is copper no pyrolysis in the simulation
- Simulation in "Coarse Cone" (7,5 mm cells)

- Heating of the different layers at different times
- Changes in thermal properties of the ashes




Time in [s]

Nomalised energy release rate in [kW / kg]

- Variation of the heat of combustion
- Simulation in "Coarse Cone" (7,5 mm cells)

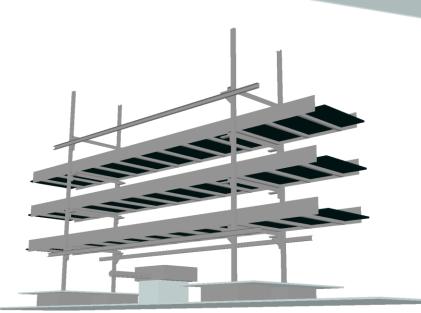
Cone with 7,5 mm cells

Future steps

Future steps Prepared models

- High-resolution cone calorimeter
 - Uniform mesh, cell size: 2 mm (cubes)
 - Number of cells: 125,000,000 (whole), 1,969,920 (only cone and specimen)

heater temperature: 598.69 °C, mean gauge heat flux at sample surface: 35.21 kW/m2


Pictures: T. Hehnen

Future steps Prepared models

- Multiple cable tray experiment
 - Uniform mesh, cell size: 1 cm
 - Based on CHRISTIFIRE Phase 1 (MT Test 1)

Pictures: T. Hehnen, CHRISTIFIRE

Thank you for your kind attention!

Do you have any questions?

Literature Excerpt

- Influence of input parameters on the fire simulation, Trettin, C., Hagemann, P., Werrel, M., Wittbecker, F.-W., PROCEEDINGS Fire and Evacuating Modelling Technical Conference (FEMTC) 2014, Gaithersburg, Maryland, September 8-10
- Babrauskas V. *Ignition Handbook*. Fire Science Publishers, Issaquah, WA 98027, USA, 1th edition, 2003. Co-published by the Society of Fire Protection Engineers.
- Karlsson B., Quintiere J. G. *Enclosure Fire Dynamics*. CRC Press LLC, Boca Raton, Florida, 2000.
- Drysdale D. *An Introduction to Fire Dynamics*. John Wiley & Sons, Southern Gate, Chichester, West Sussex PO19 8 Q, England, second edition, 1998.
- Safety request form: "Request to characterize the burning behaviour of a vertical stack of horizontal cable trays.", Answered by: F.Corsanego DGS/SEE, EDMS No.: 1357073 v1.0
- Technical Note: "Fire modelling tools: Parameters for vertical and horizontal cable tray fire modelling. Results from real-scale tests.", F.Corsanego, DGS-SEE, EDMS No.: 1097020 ver. 1
- *Guideline: "Fire modelling tools: Quick method to calculate the fire load of cable trays and cable ladders ."*, F.Corsanego, DGS-SEE, EDMS No.: 1405658 ver. 1

- Fire Performance of Electric Cables new methods and measurement techniques, Final Report on the European Commission SMT Programme Sponsored Research Project SMT4 –CT96-2059, Interscience Communications Limited, West Yard House, Guildford Grove, Greenwich, London SE10 8JT, UK
- Cable Heat Release, Ignition and Spread in Tray Installations During Fire (CHRISTIFIRE) Phase 1: Horizontal Trays, NUREG/CR-7010, Vol. 1, U.S.NRC, July 2012, McGrattan K., Lock L., Marsh N., Nyden M., Bareham S., Price M.,
- Cable Heat Release, Ignition and Spread in Tray Installations During Fire (CHRISTIFIRE) Phase 2: Vertical Shafts and Corridors, NUREG/CR-7010, Vol. 2, U.S.NRC, July 2012, McGrattan K., Lock L., Marsh N., Nyden M., Bareham S., Price M.,
- Coutin M., PlumecocqW., Melis S., Audouin L. *Energy balance in a confined fire compartment to assess the heat release rate of an electrical cabinet fire*. Fire Safety Journal, 52:34 45, 2012.
- Dietmar Hosser and Volker Hohm. Application of a new model for the simulation of coupled heat transfer processes during fires to safety relevant objects in nuclear facilities. Fire Safety Journal, 62, Part B(0):144 – 160, 2013. Special Issue on PRISME – Fire Safety in Nuclear Facilities.

- F. Bonte and N. Noterman and B. Merci. *Computer simulations to study interaction between burning rates and pressure variations in confined enclosure fires*. Fire Safety Journal, 62, Part B(0):125 – 143, 2013. Special Issue on PRISME – Fire Safety in Nuclear Facilities.
- Lee B. T. *Heat release rate characteristics of some combustible fuel sources in nuclear power plants*. Technical report, U.S. Department of Commerce, National Bureau of Standards, Gaithersburg, MD 20899, 1985.
- Mangs J., Paananen J., Keski-Rahkonen O. *Calorimetric fire experiments on electronic cabinets*. Fire Safety Journal, 38:165 186, 2003.
- Tewarson A. Characterization of the fire environments in central offices of the telecommunications industry. Fire and Materials, 27:131 – 149, 2003.
- Boulet P., Parent G., Acem Z., Rogaume T., Fateh T., Zaida J., Richard F.
 Characterization of the radiative exchanges when using a cone calorimeter for the study of the plywood pyrolysis. Fire Safety Journal, 51(0):53 60, 2012.
- McGrattan K., McDermott R., Weinschenk C., Overholt K. Fire Dynamics Simulator (Version 6) User's Guide. Technical report, NIST, Gaithersburg, Maryland, USA, September 2014.

- SC/GS. Criteria and standard test methods for the selection of electric cables and wires with respect to fire safety and radiation resistance. IS23 Rev. 3, CERN, CH-1211 Geneva 23, Switzerland, February 2005.
- **Staggs J. E. J**. Convection heat transfer in the cone calorimeter. *Fire Safety Journal*, 44(4):469 474, 2009.
- **Staggs J. E. J**. A reappraisal of convection heat transfer in the cone calorimeter. *Fire Safety Journal*, 46(3):125 131, 2011.
- Stein A. B., Sparrow E. M., Gorman J. M. Numerical simulation of cables in widespread use in the nuclear power industry subjected to fire. Fire Safety Journal, 53(0):28 – 34, 2012.

