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The beginningé

C nl f “eneqihheavy ion collisions lead to the formation of a quark -gluon
plasma, then color screening prevents cc binding in the deconfined
i nterior of the inter aSatz,i1986) r egi ono ( M:

NAZE  O"-Uranium 200 GCav/a NAJE  O™-Urgnium 200 Gev/a

ET<28 GeV ET>50 GeV All Pt

C NA38, O -U collisions
Lz s o atthe CERN SPS
xnorsosr | C 200 GeV/nucleon

fﬁf MAXIMUM LIKELIHODD !

A (lab system! (Gs\\=19.4 GeV )

Abstract. The dimuon production in 200 GeV/nu-
cleon oxygen-uranium interactions 1s studied by the
NA 38 Collaboration. The production of J/¥, corre-
lated with the transverse energy ET, is investigated
and compared to the continuum, as a function of the
| dimuon mass M and transverse momentum PT. A

- ~a

7 T rrrT (R L) -
E ] . r
N '.-I

M., (GEV/CT)

Quark Matter 87 value of 0.64+0.06 is found for the ratio (¥/Contin-
: : ) uum at high ET)/(¥/Continuum at low ET), from
First evidence for J/ y suppression which the J/¥ relative suppression can be extracted.

In nuclear collisions! This suppression is enhanced at low PT,
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eand the feedbac
t he audi enceé

From the QM87 summary talk

The most provocative observation, rpm“ted by NA38

[13], was that J/ production seems to be suppressed
by ~30% in high E; eventis. The second provocative

3 Puzzles

N N _f93+06  for Er<28GeV
W eT159404  for Ep>50 GeV.

3.1 J/Psi suppression This 30% reduction of ¥ production caused the most
controversy at Quark Maiter "87.
There are naturally several caveats that need fur-
ther consideration. First, there is the problem of prov-
C Competing sources of J/ y dissociation involving hadronic interactions
(with cold nuclear matter and/or hadronic medium) can reproduce the
observations if S ,~1-2 mb

A signature of deconfinemen t,
or justa generic signature for dense matter formation?
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Where do we stand,
after 30 years ?

C A wealth of high -quality data have been accumulated,
at various facilities (SPS, RHIC, LHC) for various collision
systems

C Do experimental results allow us to

1) Understand the phenomenology of quarkonium in HI ?
2) Extract quantitative/detailed information on the QGP
features ?
C In this talk At o
AThe fApusho from experiments i sEENET
Letds discuss |l ots of high qu

C As for all observables in HI, interaction with theory
IS mandatory A see next talk
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In AA collisions

N\
1= From
Iz color
screening
Color Screening
Quarkonium melting
A QGP thermometer
5
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Quarkonium melting
A QGP thermometer

J/y In AA collisions

[ ]iattice aco
- QCD Sum rules

: From
l:l Potential Models C O | Or
[ 17, 52006V screenin g

Color Screening
melting T/T
6
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In AA collisions

[ ]iattice aco
- QCD Sum rules F ro m
color
screening
Color Screening
Quarkonium melting
A QGP thermometer 44
Central AA SPS RHIC LHC £ o _
CO”iSionS 20 GeV 200 GeV 5 TeV i‘:‘ statistical mgeneratlon
o
New/event | ~02 | ~10 | -115 | < to
R=
-§ quark
Quarkonlum (re)gene_ratlpn Q; sequential suppression (re)
A Heavy quark dynamics in QGP 5 combination

Energy Density
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Disclaimer

C Although the fscreening+recombination O picture is conceptually simple
and attractive, a realistic description implies a sophisticate treatment

C Some examples
C At high -energy the QGP thermalization times can be very short

A | n-medium formation of quarkonium rather than suppression of
already formed states
A Heavy quark diffusion IS relevant for quarkonium production
C Need

C Tp,My( T) x(T)bfromQCD calculations
(using spectral functions from EFT/LQCD )
C Fireball evolution from microscopic calculations
C Precise determination of the total open charm cross section

Impressive advances on theory side but the availability of data for
various colliding systems and energy remains a must!
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Low-p; J/y: ALICE (vs PHENIX) 3. Abelev et al ALICE

PLB 734 (2014) 314

Inclusive Jiy — piy Inclusive Jiy — u'y”, Pb-Pb |5, = 2.76 TeV and Au-Au |5, = 0.2 TeV
B ALICE, 2.5=p<4, 0-20% global syst.= + 8%

m ALICE, Pb-Pb \Syw=276TeV,25<y < 4.pT < 8 GeV/c

NK

O PHENIX, Au-Au s, =0.2TeV,1.2<y| <22, [ 0 GeVic

-------

100 150 200 250 300 350 400
(N

part

C Results vs centrality dominated by low -p1 Jy

¢C Systematically larger R ,, values for central events at LHC
C R,, INcreases at low pr at LHC 5
C Precise results at OG5\ =5.02 TeV, compatible with  Gs\\=2.76 TeV

RHIC energy A suppression  effects dominate

Possible interpretation: : :
P {LHC energy A suppression + regeneration
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Low-p+ J/y: ALICE (vs PHENIX) JAdam etal, ALICE

PLB766(2017) 212

Inclusive J/y — pp

® ALICE, Pb-Pb s, =502TeV,25<y <4,p_<8GeVic

® ALICE, Pb-Pb |5y, =276 TeV,25<y <4,p_<8GeV/c

O PHENIX, Au-Au\s,, =0.2TeV,12<y| <22, p. > 0 GeVic

Inclusive J/y — p*w’, 0-20% centrality

® ALICE, Pb-Pb\s,,=502TeV,25<y <4

® ALICE, Pb-Pb |s,, =276 TeV,25<y <4

®  PHENIX, Au-Au\s,, =0.2TeV,1.2<|y| <2.2

forward y

IE@-.EHEII.I. Ofc)
®

Eﬁﬁ

100 150 200 250 300 350 400
(N .0

part

C Results vs centrality dominated by low -p1 Jy

¢C Systematically larger R ,, values for central events at LHC
C R,, INcreases at low pr at LHC 5
C Precise results at OG5\ =5.02 TeV, compatible with  Gs\\=2.76 TeV

RHIC energy A suppression  effects dominate

Possible interpretation: : :
P {LHC energy A suppression + regeneration
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Low-p, J/y: central vs forward -y

ALICE, inclusive J/y — e'e’ i ALICE Pb-Pb |s,, =5.02 TeV
®  Pb-Pb,\s,, = 5.02 TeV (Preliminary) . i ® Jwy-—e'e|y <08, p,>0 GeV/e (B
Pb-Pb, | s,,, = 2.76 TeV (PLB 734 (2014) 314-327) u

central y

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
(N_) (N__)

part parnt

C Central Pb-Pb: hints for a weaker suppression at y~0 with respect to
forward -y results at G5y =5.02 TeV
A expected in a (re)generation scenario (fluctuation cannot be excluded)

C No significant Gs, -dependence  of R, (5.02vs 2.76  TeV), confirming
forward -y observations
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Low-p, J/y: central vs forward -y

ALICE, inclusive J/y — e'e’
®  Pb-Pb,\s,, =5.02 TeV (Preliminary) Inclusive Jiy — e'e’
=2.76 TeV (PLB 734 (2014) 314-327) . lv| < 0.8, p,> 0.15 GeV/e

Pb-Pb, \ s

NN

Transport (TM1, Du and Rapp)

Transport (TM2, Zhou et al.)

Statistical hadronization (Andronic et al.)
~1Co-movers (E. Ferreiro)

0 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 450
(Npan} <N >

part

C Central Pb-Pb: hints for a weaker suppression at y~0 with respect to
forward -y results at G5y =5.02 TeV
A expected in a (re)generation scenario (fluctuation cannot be excluded)

C No significant Gs, -dependence  of R, (5.02vs 2.76  TeV), confirming
forward -y observations

C Transport and statistical models have large uncertainties
(shadowing+open charm cross section)
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o, New J/'y Vv, results
4> ! C The contribution of  J/y from

(re)combination could lead to an
elliptic flow signal at LHC
A hints observed inrun -1 results

ALICE Preliminary
Pb-Pb \s,, = 5.02 TeV, 20-40%

Inclusive JAy — uu-, 25 <y <4

C From hint to evidence for a
non -zerov , signal , maximum for
4< p.<6 GeV/c, 20 -40% centrality

" v,{EP, An=5.3}

¢ Vv, {EP,An=1.1} global syst : + 1%
10 12
p, (GeV/c)
Pr 0-2 [2-4 |4-6 |6-8 |8-12
(GeV/c)

DF1.1 22s |6.3s ' 74s 50s |28s
D 5.3 14s [6.2s [50s |3.3s |1.3s

C A significant fraction of observed J/ y comes from charm
quarks which thermalized in the QGP
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New J/'y Vv, results

C The contribution of  J/y from
(re)combination could lead to an
elliptic flow signal at LHC
A hints observed inrun -1 results

ALICE, Pb-Pb, 20-40%
Inclusive Jiy — p'u-, 25 <y <4

C From hint to evidence for a
non -zerov , signal , maximum for
$ VA{EP, A1 = 1.1}, {8 = 5.02 TeV| sesn- o poamc 4< p.<6 GeV/c, 20 -40% centrality

§ VAEP, An =53}, {5, =276 TeV! sowssm- 1o pm s

C Agreement, within uncertainties,
with run -1 results

Pr 0-2 [(2-4 |4-6 |6-8 |[8-12

DF1.1 22s |6.3s [|74s 50s |28s
D 5.3 14s [6.2s [50s |3.3s |1.3s

C A significant fraction of observed J/ y comes from charm
guarks which thermalized in the QGP
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New J/'y Vv, results

C The contribution of  J/y from
(re)combination could lead to an

ALICE Preliminary, Pb-Pb |s,, = 5.02 Te

+ + + elliptic flow signal at LHC
++H+ # A hints observed inrun -1 results
I

+ . C From hint to evidence for a

non -zerov , signal , maximum for

4< p;<6 GeV/c, 20 -40% centrality

[ Prompt 0%, o’ average, v,{EP, lAr] = 0.9}, 141 < 0.8, 30-50%

[ Syst from B feed-down

C Agreement, within uncertainties,
with run -1 results

Pt 0-2 |2-4 |4-6 |6-8 |[8-12 |
(GeVic) C Comparison closed vs open charm
D k1.1 22s |63s | 74s ' 50s [28s A Learn about light vs heavy
D53 |1.4s |62s |50s |3.3s |1.3s quark flow

E. Scomparin,

C A significant fraction of observed J/ y comes from charm

guarks which thermalized in the QGP
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V. Khachatryan et al. I _
(CMS), arXiv:1610.00613 ngh pT J/y

ATLAS Preliminary

PbPb, \/s = 5.02 TeV, 0.42 nb™
pp, /s =5.02 TeV, 25 pb™
Prompt J/y, lyl <2

0-80% centrality

0 50 100 150 200 250 300 350 400

ILs’lpart
C Striking difference with respect C R, INcreases for
to low -p;J/y pr> 20 GeVic
C Suppression increases with C Related to energy loss
centrality  at high p;, down effects, rather than
to R ,,~0.3 dissociation ?

E. Scomparin, Quarkonium production in AA collisions, QM2017, Chicago, February 2017

ATLAS-CONF-2016 -109
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J/y - RHIC energy

C Recent highlights by STAR
p+ J/ y suppression

C Low vs high

STAR preliminary % STAR: AusAu, |s,,, =200 GeV, Iyl <0.5,p_>5 GeV/c
m CMS: Pb+Pb, \s, =2.76 TeV, lyl <2.4, p.> 6.5 GeV/c

p. >0GeV/c

T,dhp
% STAR: Au+Au, |'s,, =200 GeV lyl <0.5
O PHENIX: Au+Au, |s,,, = 200 GeV lyl <0.35
STAR preliminary

m ALICE: Pb+Pb, ys,, =2.76 TeV lyl <0.8

STAR N_  uncertainty

coll

STAR N__ uncertainty

coll

C Low p;Jy, RuHE>R L\RHIC & strong regeneration
a weak (or no) regeneration

C High p;J/y, RaMCO<R p\RHC

17
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vy (2S)in Pb -Pb

C Binding energy ~(2m  p-my) A y(2S) ~ 60 MeV, J/ y ~ 640 MeV

Ip C Expect much stronger dissociation effects
for the weakly bound  y(2S) state

@ C Effect of re -combinationon y(2S) more subtle
A important when the system is more diluted
(even hadronic?)

Important test
for models!

18
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V. Khachatryan et al. (CMS), DOUbIe rat|()S y (28)/J/ y

arXiv:1611.01438

PbPb 351 ub™", pp 28.0 pb™' (5.02 TeV) MJ 7 -«

= Cent.
® |syy=5.02TeV CMS ) : ALICE inclusive J/y, y(2S), Pb-Pb, 2.5<y<4, 0<p_<3 GeV/c
o, V=276 TeV 0-100% !
(PRL113 (2014) 262301) 5.02TeV ——— {5, = 5.02 TeV (Preliminary)

VS =2.7 ' 2 79)
16<lyl <24, 3<p, <30 GeVic 276TeV S 76 TeV (JHEP 05 (2016) 179)
Upper limits include global uncertainties

Prompt only
Intermediate  p; %

0 50 100 150 200 250 300 350 400
N

part

C (Y@2S)IY)pper! (Y(25)I y)p, A <<1inadissociation scenario
C CMS (intermediate  p;) enhancement to suppression  forincreasing Gs\
C ALICE extends downto  p;=0, suppression is seen

C Proposed mechanism (Rapp) for enhancement: y (2S) regeneration
mainly occurring later , when radial flow is already built -up

19
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V. Khachatryan et al. (CMS), DOUbIe rat|()S y (28)/J/ y

arXiv:1611.01438

PbPb 351 ub™", pp 28.0 pb™' (5.02 TeV) _ MJ 7 -«

- Cent.
. E - Z:z :: CMS - ~0. 2 JAy, w(2S), Pb-Pb |5, = 5.02 TeV
dh NN~ &

(PRL113 (2014) 262301) 5.02TeV ALIGE, Sap, 8 (0¥1G, 25<4., laclisive (Prefimineny)
16<lyl <24, 3<p_<30Gevic 2.76TEV

Prompt only
Intermediate  p; %

0 50 100 150 200 250 300 350 400
N

part

C (Y@2S)IY)pper! (Y(25)I y)p, A <<1inadissociation scenario

C CMS (intermediate  p;) enhancement to suppression  forincreasing Gs\
C ALICE extends downto  p;=0, suppression is seen

C Good compatibility at ~ Gs\=5.02 TeV inthe common p; range

C Proposed mechanism (Rapp) for enhancement: y (2S) regeneration
mainly occurring later , when radial flow is already built -up
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p-A results and CNM effects

Low -energy collisions
cc pair may form inside nucleus

A can be dissociated
A low hadronic multiplicity

E. Scomparin,

Quarkonium production in AA collisions, QM2017, Chicago, February 2017
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p-A results and CNM effects

Low -energy collisions
cc pair may form inside nucleus

A can be dissociated
A low hadronic multiplicity

E. Scomparin,

Quarkonium production in AA collisions, QM2017, Chicago, February 2017
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p-A results and CNM effects

Low -energy collisions

cc pair may form inside nucleus
A can be dissociated

A low hadronic multiplicity

High -energy collisions

cc pair forms outside nucleus

A not dissociated in the nucleus

A May i nteract wit

23
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p-A results and CNM effects

Low -energy collisions

cc pair may form inside nucleus
A can be dissociated

A low hadronic multiplicity

High -energy collisions

cc pair forms outside nucleus

A not dissociated in the nucleus

A May i nteract wit
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P-A results and CNM effects

Low -energy collisions

cc pair may form inside nucleus
A can be dissociated

A low hadronic multiplicity

High -energy collisions
cc pair forms outside nucleus

e
¢ A not dissociated in the nucleus
A May i nteract wit
C Important ingredient for the interpretation of A -A results
C Study of various QCD -related mechanisms
(shadowing, coherent parton ener gy | os s, CGC, e )

25
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ALICE results from the recent p -Pb LHC run
(G5\n=8.16 TeV)

C Extend kinematic coverage ( p;=20 GeV/c) QA71 >
C Different (higher) energy

A slightly different x  -region
C Resultsat  Gsy,=5.02 and 8.16 TeV

compatible CERN-ALICE-PUBLIC-2017 -001

26

E. Scomparin, Quarkonium production in AA collisions, QM2017, Chicago, February 2017



