The Electron-Ion Collider: A New Tool for Studying QCD

Christine A. Aidala
University of Michigan

Student Day, Quark Matter 2017
Chicago
February 5, 2017

arXiv:1212.1701
Areas of study in QCD

• Structure/properties of QCD matter

• Formation of states of QCD matter

• Interactions within QCD
Structure/Properties of QCD matter

• Bound states: Mesons and baryons

• Bound states of bound states: Nuclei, neutron stars

• Deconfined states: Quark-gluon plasma
Formation of states of QCD matter

- Hadronization mechanisms
- Formation of bound states of bound states
- Jet structure
- Equilibration of QGP
- Time scales of hadronization/equilibration
- Modification of hadronization in different environments
Interactions within QCD

- Parton energy loss in cold and hot QCD matter
- Flow of partons within QGP
- Quantum interference and phase shifts
 - E.g. quantum interference effects in hadronization
 - One parton \rightarrow multiple hadrons
 - Multiple partons \rightarrow one hadron
- Color flow effects
 - Process-dependent spin-momentum correlations in hadrons
 - Quantum entanglement of partons across colliding hadrons
Complexity and richness of QCD: Confinement

- QCD theory: Quarks and gluons
- QCD experiment: QCD bound states

- Always an interplay between partonic/hadronic descriptions, reductionist/emergent pictures
High-energy collisions:
Tools to study QCD

• Need high (enough) energies to
 – Access subnuclear distance scales
 – Form new states of QCD matter

• High energies can also
 – Allow use of perturbative theoretical tools
 – Provide access to new probes, e.g. heavy flavor, Z/W bosons
High-energy collisions:
Tools to study QCD

Can study QCD via

- **Hadron-hadron collisions**: p+p, p+A, A+A, pbar+p/A, π+A

- **Lepton-hadron collisions**: e/μ+p, e/μ+A, ν+A

- **Lepton-lepton collisions**: e⁺e⁻ (hadronization)
High-energy collisions: Control

The more aspects of the collisions we can control/manipulate, the more powerful our tools

- Collision species \rightarrow state of matter to be studied, geometry, path length, flavor/isospin, electroweak vs. strong interactions
- Energy \rightarrow distance/time scales, probes accessible, states of matter
- Polarization \rightarrow spin-spin and spin-momentum correlations in QCD systems or in hadronization, sensitivity to system properties (e.g. gluon saturation)

Some aspects we select rather than control

- Centrality, final-state produced particles and their kinematics

Multidifferential measurements even more powerful

- p_T, rapidity, centrality, angular distribution/correlation, PID, . . .
Why an Electron-Ion Collider?

• Electroweak probe
 – “Clean” processes to interpret (QED)
 – Measurement of scattered electron \(\rightarrow \) full kinematic information on partonic scattering

• Collider mode \(\rightarrow \) Higher energies
 – Quarks and gluons relevant d.o.f.
 – Perturbative QCD applicable
 – Heavier probes accessible (e.g. charm, bottom, W boson exchange)
EIC facility concepts

- Beams of light \rightarrow heavy ions
 - Previously only fixed-target $e^{+}A$ experiments
- Polarized beams of p, d/He^3
 - Previously only fixed-target polarized experiments
EIC facility concepts

- Beams of light \rightarrow heavy ions
 - Previously only fixed-target e+A experiments
- Polarized beams of p, d/He3
 - Previously only fixed-target polarized experiments
- Luminosity 100-1000x that of HERA e+p collider
- Two concepts: Add electron facility to RHIC at BNL or ion facility to CEBAF at JLab
Partonic momentum structure of nuclei: Not just superposed protons and neutrons

- Ratio of cross section for e+A compared to scaled e+p collisions, shown vs. parton momentum fraction x
- Regions of both enhancement and depletion—only Fermi motion reasonably understood

$R_A \equiv \frac{1}{A} \frac{F_{2A}}{F_{2N}} \neq 1$

SLAC: Gomez et al. PRD49, 4348 (1994)
Partonic momentum structure of nuclei: Nuclear parton distribution functions

(Traditional collinear, unpolarized) Nuclear PDFs

EPPS16 – arXiv:1612.05741
Partonic momentum structure of nuclei: EMC effect and local density

- Fit slope of ratios for $0.3 < x < 0.7$; compare across nuclei
- EMC slope doesn’t scale with A or with avg nuclear density...
Partonic momentum structure of nuclei: EMC effect and local density

Density determined from *ab initio* few-body calculation
S.C. Pieper and R.B. Wiringa,

But appears to scale with local density!
Local density in nuclei is important!

Partonic spatial structure of nuclei: Diffraction

• X-ray diffraction used to probe spatial structure of atomic crystal lattices
 – Measure in momentum space, Fourier transform to position space

• Nuclear distance scales → Need gamma ray diffraction!
 – Again measure diffractive cross section in momentum space (Mandelstam t), Fourier transform to position space

Diffraction pattern from monochromatic plane wave incident on a circular screen of fixed radius

From E. Aschenauer
Partonic spatial structure of nuclei: Diffraction

Expected diffraction pattern from gamma ray incident on ~spherical nucleus

Diffractive ρ production in Au+Au ultraperipheral collisions

e+A, p+A, or A+A. Probed nucleus in one beam. Gamma emitted by electron or Coulomb-excited proton/nucleus passing nearby in second beam.
Partonic spatial structure of nuclei: Diffraction

Goal: Cover wide range in t. Fourier transform \(\Rightarrow \) impact-parameter-space profiles. Obtain \(b \) profile from slope vs. t.

Note: Can use Bose-Einstein correlations (HBT) in e+A to probe spatial extent of particle production region, as in hadron-hadron collisions.
Diffraction to study universal state of gluonic matter: Gluon saturation

• In addition to probing spatial structure, diffraction is one way to probe gluon saturation within nuclei
Gluon saturation

At small x linear evolution gives strongly rising $g(x)$ — but must be bounded!

BK/JIMWLK non-linear evolution includes recombination effects \rightarrow saturation

- Dynamically generated scale
 - Saturation Scale: $Q_s^2(x)$
 - Increases with energy or decreasing x
 - Scale with $Q^2/Q_s^2(x)$ instead of x and Q^2 separately

$$\sigma_{tot} = \frac{\pi}{m_\pi^2} (\ln s)^2$$

Bremsstrahlung $\sim \alpha_s \ln(1/x)$

Recombination $\sim \alpha_s \rho$

$x = \frac{P_{\text{parton}}}{P_{\text{nucleon}}}$
Diffraction in e+A as a probe of gluon saturation

- Fewer potential competing effects in e+p/A than hadron-hadron collisions
- Easier to reach predicted saturation regime with e+A than e+p
- e+Au at higher c.m. energies for EIC will provide window of overlap where both Color-Glass Condensate effective field theory calculations and perturbative QCD calculations can be done and compared
Diffraction in e+A as a probe of gluon saturation

- **Top panel:** EIC projections for ratio of diffraction cross section to total, along with predictions based on saturation and shadowing models.
- **Bottom panel:** Projections and predictions for double ratio: \(\frac{\text{diffractive/total}}{\text{total}} |_{e+A} / \frac{\text{diffractive/total}}{\text{total}} |_{e+p} \)
 - Very strong handle to distinguish saturation from shadowing!

- **Note:** Saturation can also be probed via 2-particle correlations in e+A, as in p/d+A.
Parton dynamics in QCD systems

- Angular correlations in particle production: one way to probe parton dynamics
- Can look at Fourier amplitudes

Large cos 2ϕ modulation in d+Au at 200 GeV, p+Pb at 5.02 TeV

Significant cos 2ϕ modulation also in p+p at 13 TeV

PHENIX: PRL 114, 192301 (2015)

arXiv:1609.06213
Parton dynamics in QCD systems: How many ways can a $\cos 2\phi$ modulation be generated in hadronic collisions??

- Large modulation in direct photon production in 200 GeV Au+Au collisions
- Huge modulation in pion-induced Drell-Yan
 - Understood as due to spin-momentum correlations of partons inside unpolarized hadrons
 - These correlations will be studied in detail at EIC

C. Aidala, QM Student Day, 2/5/17

E615, PRD39, 92 (1989)
NA10, ZPC31, 513 (1986)
Formation of QCD bound states: Hadronization at EIC

- Use nuclei as femtometer-scale detectors of the hadronization process!
- Wide range of scattered parton energy; small to large nuclei
 - Move hadronization inside/outside nucleus
 - Distinguish energy loss and attenuation

Comprehensive studies of hadronization as well as of propagation of color charges through nuclei possible at EIC
As in A+A and p+A, fragmentation functions are modified in e+A, e.g. suppression of pion production.
Formation of QCD bound states: Hadronization in higher-density partonic environments

Baryon enhancement observed in central A+A but also peripheral A+A and in p/d+A.

p/π ratio for central d+Au and peripheral Au+Au—shape and magnitude identical!

Suggests common mechanism(s) for baryon production in the two systems

<table>
<thead>
<tr>
<th>Centrality</th>
<th>$\langle N_{\text{coll}} \rangle$</th>
<th>$\langle N_{\text{part}} \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au+Au</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-92%</td>
<td>14.8 ± 3.0</td>
<td>14.7 ± 2.9</td>
</tr>
<tr>
<td>d+Au</td>
<td>15.1 ± 1.0</td>
<td>15.3 ± 0.8</td>
</tr>
</tbody>
</table>

PRC88, 024906 (2013)
Formation of QCD bound states: Hadronization in higher-density partonic environments

- Evidence for baryon enhancement also in e+A!
- Baryon enhancement in A+A, p+A, e+A suggests mechanism(s) other than “vacuum fragmentation”
- Binding of nearby partons in phase space?

HERMES, NPB780, 1 (2007)
Links to collective behavior in high-multiplicity $p+p$, and in $p+A$?

Lots of interesting behavior when extra partons come into play, whether it’s “hot” or “cold” QCD
Formation of bound states of bound states: Creating nuclei

Will it be possible to create e.g. d, dbar in e+A??
Formation of QCD bound states: Hadronization at EIC

Fragmentation from QCD vacuum

Virtual photon

Incoming lepton

String Breaking

Scattered lepton

Current fragmentation

Target fragmentation

\[+\eta \sim 4 \]

\[-\eta \sim -4 \]
Formation of QCD bound states: “Target fragmentation” region

- Related to color neutralization of remnant—soft particle production

- Electron-Ion Collider will map out target fragmentation region well
 - Collider geometry – easier than in fixed-target to separate “current” from “target” fragmentation

- Connections to
 - “Underlying event” in hadron-hadron collisions
 - Forward hadron production in hadron-hadron collisions
 - Cosmic ray physics

- “Fracture functions” – theoretical tools to describe target fragmentation
Conclusions

• These are exciting times in QCD!
• Complementary facilities, as well as theoretical advances, are allowing us to probe QCD’s rich complexities in ever-greater detail, with ever-increasing sophistication
 – Part of new era of QCD as a more mature field

Electron-Ion Collider → next major facility in the ongoing quest to address the fundamental questions of QCD
 • How do we describe different QCD systems in terms of their quark and gluon degrees of freedom?
 • In what ways can colored quarks and gluons form colorless QCD bound states?
 • What are unique properties of QCD interactions?
Extra
Bose-Einstein correlations for nuclear semi-inclusive DIS

- Sensitive to spatial separation of production of the two particles
- No nuclear dependence found within uncertainties

HERMES, EPJ C75, 361 (2015)
Hadronization: Parton propagation in matter

• Interaction of fast color charges with matter?
• Conversion of color charge to hadrons through fragmentation and breakup?

Existing data \Rightarrow hadron production modified on nuclei compared to the nucleon!
EIC will provide ample statistics and much greater kinematic coverage!
- Study time scales for color neutralization and hadron formation
- $e+A$ complementary to jets in $A+A$: cold vs. hot matter
Accessing quarks and gluons through DIS

Kinematics:

Quark splits into gluon
Gluon splits into quarks

\[Q^2 = -q^2 = -(k_{\mu} - k'_{\mu})^2 \]
\[Q^2 = 2E_e E'_e (1 - \cos \Theta_{e'}) \]
\[y = \frac{pq}{pk} = 1 - \frac{E'_e}{E_e} \cos^2 \left(\frac{\Theta'_{e}}{2} \right) \]
\[x = \frac{Q^2}{2pq} = \frac{Q^2}{sy} \]

Measure of resolution power
Measure of inelasticity
Measure of momentum fraction of struck quark

Quark density
Valence quark
Sea quark

Momentum fraction x
10^{-16}m
10^{-19}m

10^{-19}m
higher \sqrt{s}
increases resolution
Accessing gluons with an electroweak probe

\[
\text{DIS: } \frac{d^2 \sigma^{ep \rightarrow eX}}{dx dQ^2} = \frac{4\pi\alpha^2_{e.m.}}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]
\]

Access the gluons in DIS via scaling violations:
\[dF_2/d\ln Q^2\] and linear DGLAP evolution in \[Q^2 \rightarrow G(x, Q^2)\]

OR

Via \(F_L\) structure function

OR

Via dihadron production

OR

Via diffractive scattering
Accessing gluons with an electroweak probe

\[\frac{d^2 \sigma^{ep \rightarrow eX}}{dxdQ^2} = \frac{4\pi\alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right] \]

Access the gluons in DIS via scaling violations:

- \(dF_2/d\ln Q^2\) and linear DGLAP evolution in \(Q^2\)

Or

- Via FL structure function

Or

- Via dihadron production

Or

- Via diffractive scattering

C. Aidala, QM Student Day, 2/5/17

Gluons dominate low-x wave function

\[xG \sim \frac{1}{20} \]

\[xd \sim \frac{1}{20} \]
Accessing gluons with an electroweak probe

\[\frac{d^2 \sigma^{ep \rightarrow eX}}{dx dQ^2} = \frac{4\pi\alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x,Q^2) - \frac{y^2}{2} F_L(x,Q^2) \right] \]

Access the gluons in DIS via scaling violations:

Via FL structure function
Via dihadron production
Via diffractive scattering

Gluons in fact dominate (not-so-)low-x wave function!
Hyperon polarization from unpolarized collisions

- 1976 lambda polarization discovery: p+Be, 300 GeV beam
- Polarization transverse to production plane up to ~20% for forward-angle lambda production; Polarizing TMD FF?
- Confirmed 1977 at CERN, p+Pt, 24 GeV beam (and by various proton-nucleus and proton-proton experiments afterwards . . .)
\(\Sigma^+ \) polarized with opposite sign

- 1981: \(p+\text{Be} \), 400 GeV beam
Ξ^0 polarization similar to Λ^0

- 1983: p+Be, 400 GeV beam
- Similar results for p+Cu and p+Pb
x_F dependence of lambda polarization in hadronic collisions

- Same sign and general x_F dependence for neutron beams
- But for K- and Σ-beams, positive polarization at positive x_F
- And for π-beam, positive polarization but at negative x_F!
- Consistent with zero for π^+ and K+ beams
Lambda polarization observed in semi-inclusive DIS

- Nonzero in both forward and backward directions

HERMES, PRD90, 072007 (2014)
Formation of QCD bound states: Heavy flavor

• Open heavy flavor—vacuum fragmentation picture

• Heavy quarkonium states—different thinking
 – Handles on production via p_T dependence, polarization, in-medium modification
 – For very high p_T production in hadronic collisions, return to vacuum fragmentation picture? How to handle multiple hard scales in calculations?
Transverse-momentum-dependent (TMD) factorization breaking and color entanglement

- 2010: Rogers and Mulders predict color entanglement in processes involving p+p production of hadrons if parton transverse momentum taken into account
- Due to gluon exchange between scattering parton and proton remnant in both initial and final state
- Partons become correlated across the two colliding protons
 - Can no longer factorize the nonperturbative functions into independent pdfs and fragmentation functions
 - Will need new (unknown) nonperturbative functions describing quantum-correlated partons across bound states
- Consequence of QCD specifically as a non-Abelian gauge theory!

\[p + p \to h_1 + h_2 + X \]

Color flow can't be described as flow in the two gluons separately. Requires simultaneous presence of both.
Searching for evidence of predicted TMD-factorization breaking at RHIC

- Need observable sensitive to a nonperturbative momentum scale
 - Nearly back-to-back particle production
- Need 2 initial-state hadrons
 - Color exchange between a scattering parton and remnant of other proton
- And at least 1 final-state hadron
 - Exchange between scattered parton and either remnant

→ In p+p collisions, measure out-of-plane momentum component in nearly back-to-back photon-hadron and hadron-hadron production
Out-of-plane momentum component distributions

- Clear two-component distribution
 - Gaussian near zero—nonperturbative transverse momentum
 - Power-law at large p_{out}—kicks from hard (perturbative) gluon radiation

- Different colors \rightarrow different bins of trigger particle p_T, proxy for hard interaction scale

Curves are fits to Gaussian and Kaplan functions, not calculations!
Look at evolution of nonperturbative transverse momentum widths with hard scale \((Q^2)\)

- Theoretical proof of factorization within transverse-momentum-dependent framework directly predicts that nonperturbative transverse momentum widths increase as a function of the hard scattering energy scale (Collins-Soper-Sterman evolution)
 - Increased phase space for gluon radiation
- Confirmed experimentally in semi-inclusive deep-inelastic lepton-nucleon scattering (left) and quark-antiquark annihilation to leptons (right)

Nonperturbative momentum widths observed to decrease in processes where factorization breaking predicted

- Suggestive of TMD-factorization breaking effects?
- Have not yet completely ruled out a “trivial” nonperturbative correlation between partonic longitudinal momentum fraction x and partonic transverse momentum k_T
- Steeper negative slope for photon-hadron than dihadron correlations—counterintuitive?
 - Photon can’t exchange gluon with remnant—might expect weaker effects than dihadron case
Nonperturbative momentum widths observed to decrease in processes where factorization breaking predicted

- Slope of decrease for both photon-hadron and dihadron correlations reproduced ~exactly in PYTHIA p+p event generator—could this effect be in PYTHIA??
- Effectively yes! Unlike analytic pQCD calculations, PYTHIA forces entire event including remnants to color neutralize, implemented via something they call “color reconnection”