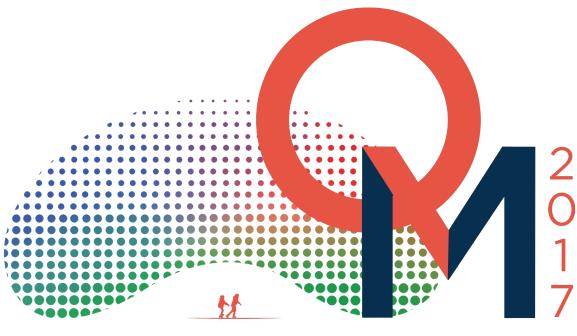
Quasiparticle anisotropic hydrodynamics

Mubarak Alqahtani, Mohammad Nopoush, and Michael Strickland Department of Physics, Kent State University, Kent, OH 44242 United States



Introduction

- Quark Gluon Plasma (QGP) is a momentum-space anisotropic plasma ($\mathcal{P}_L \neq \mathcal{P}_T$) \bullet
- By QCD calculations, like hard thermal loop (HTL) resummation, quarks and gluons have temperature dependent masses $(m \sim T)$.
- Here we assume that the QGP can be described as a gas of non-interacting quasiparticles with zero width at all temperatures.

Anisotropic hydrodynamics

The aHydro distribution function

$$f(x,p) = f_{\rm eq} \left(\frac{1}{\lambda} \sqrt{\sum_{i} \frac{p_i^2}{\alpha_i^2} + m^2} \right)$$

- The mass is a function of temperature using realistic equation of state (EoS) provided from lattice calculations.
- The effects of full non-conformality (quasiparticle aHydro) and approximate conformality (standard aHydro) are studied.

Boltzmann Equation

• Boltzmann equation

$$p^{\mu}\partial_{\mu}f + rac{1}{2}\partial_{i}m^{2}\partial^{i}_{(p)}f = -\mathcal{C}[f]$$

- When adding medium-dependent masses, thermodynamic consistency is not guaranteed, due to the gradients of m, i.e., $S_{eq} \neq \partial P_{eq}/\partial T$.
- $T^{\mu\nu}$ is not conserved, i.e, $\partial_{\mu}T^{\mu\nu} \neq 0 \implies$ introduce a background field

$$T^{\mu
u} = T^{\mu
u}_{\text{kinetic}} + g^{\mu
u}B$$

- Then, Boltzmann Eq. keeps $T^{\mu\nu}$ conserved and takes into account gradients in the mass.
- Moments of Boltzmann Eq.

$$\partial_{\mu}J^{\mu} = -\int dP \, C[f]$$

 $\partial_{\mu}T^{\mu\nu} = -\int dP \, p^{\nu}C[f] = 0$
 $\partial_{\mu}\mathcal{I}^{\mu\nu\lambda} - J^{(\nu}\partial^{\lambda)}m^{2} = -\int dP \, p^{\nu}p^{\lambda}C[f]$

When $(\alpha_x = \alpha_y = \alpha_z = 1)$ and $\lambda \longrightarrow T \implies$ isotropic equilibrium limit.

The background field

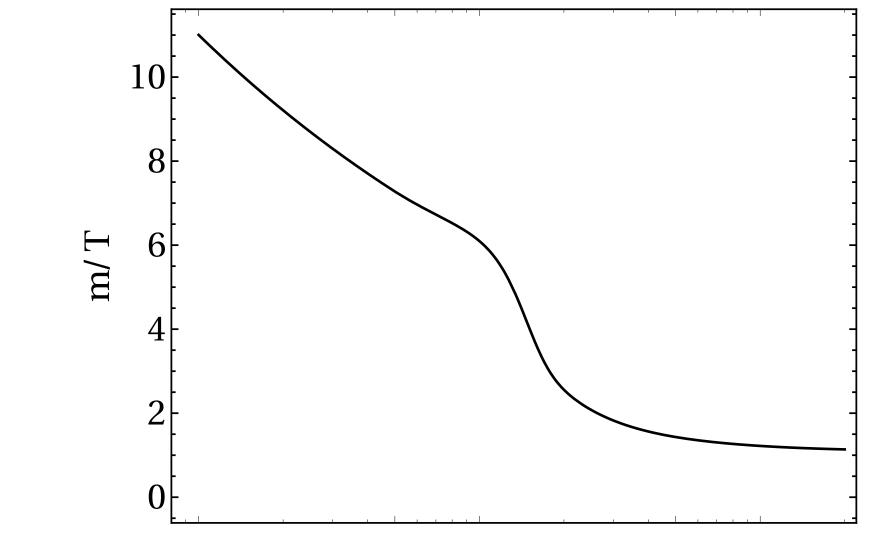
Using lattice results one can get m(T)

$$\mathcal{E}_{\rm eq} + \mathcal{P}_{\rm eq} = T\mathcal{S}_{\rm eq} = T\frac{\partial P_{\rm eq}}{\partial T} = 4\pi\tilde{N}T^4\,\hat{m}_{\rm eq}^3K_3\,(\hat{m}_{\rm eq})$$

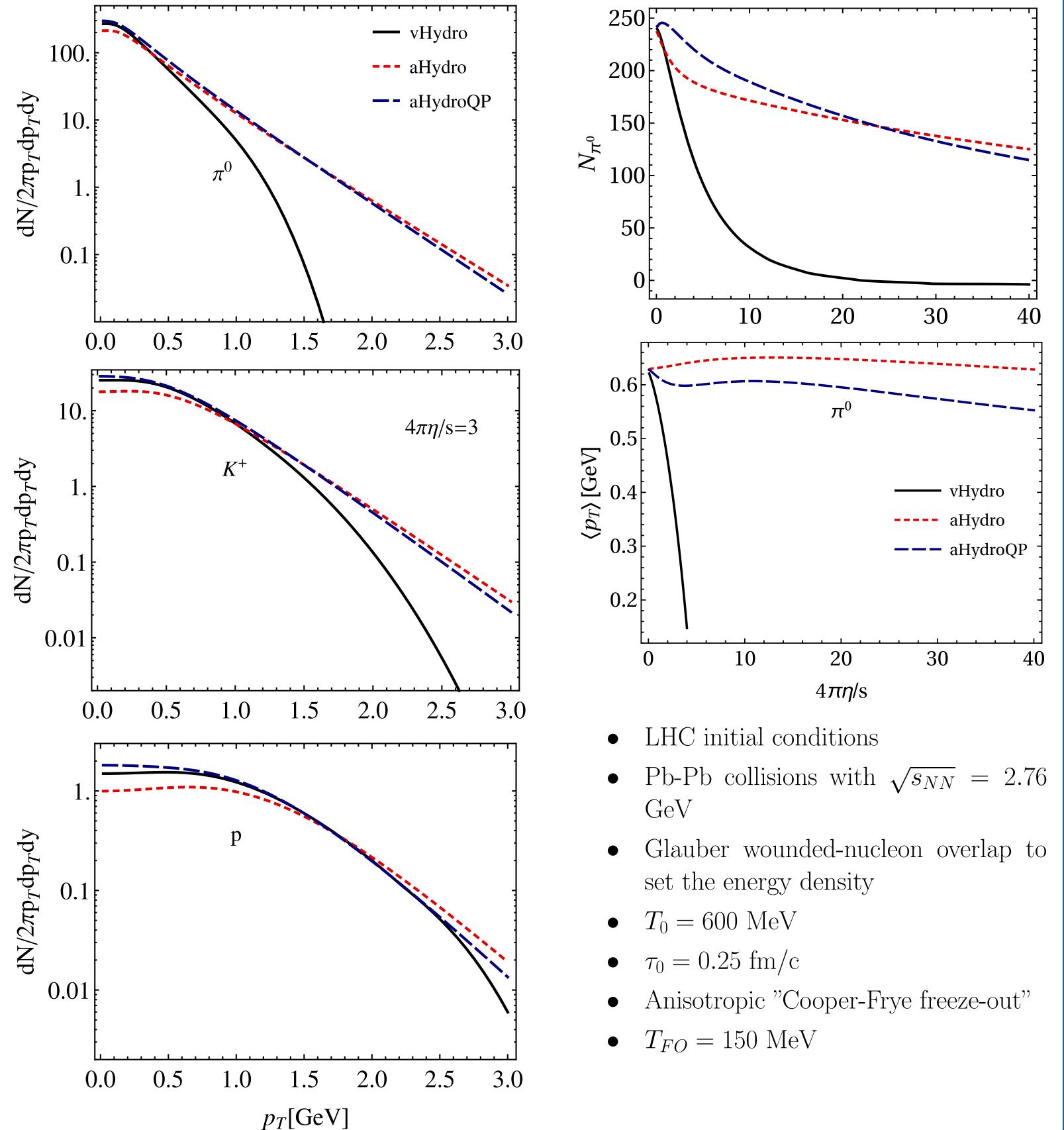
Using thermodynamic consistency $B_{eq}(T)$,

$$\frac{dB_{\rm eq}}{dT} = -4\pi \tilde{N}m^2 T K_1(\hat{m}_{\rm eq})\frac{dm}{dT}$$

One boundary condition to use $B_{eq}(0) = 0$



Final Results



0.01 0.05 0.10 0.50 T [GeV]

Discussions

- We studied quasiparticle aHydro, standard aHydro and second order viscous hydrodynamics and looked at their predictions.
- Both shear and bulk viscosities are included.
- Here, we show only $\eta/s = 3/(4\pi)$ where there are some differences, however all models agree quite well for small η/s .
- At low p_T , the standard aHydro method shows a suppressed production compared with other methods.
- The pion spectra in vHydro went negative at $p_T \sim 1.6$ GeV (for $\eta/s =$ lacksquare $3/(4\pi))$
- The number of pions in vHydro went negative at $4\pi\eta/s \sim 22$.
- vHydro shows a negative mean transverse average at small $\eta/s = 5/(4\pi)$.

Conclusions

- All models agree well for small η/s .
- The standard method shows a suppressed production at low transversemomentum compared with other methods.
- The bulk viscous correction in vhydro can drive the primordial particle spectra negative.

Acknowledgements/References

M. Nopoush and M. Strickland was supported by the U.S. Department of Energy under Award No. DE-SC0013470. M. Alqahtani was supported by a PhD fellowship from the University of Dammam.

- M. Alqahtani, M. Nopoush, and M. Strickland, arXiv:1509.02913
- M. Alqahtani, M. Nopoush, and M. Strickland, arXiv:1605.02101