

Measurement of the D⁺ meson production in Pb-Pb and p-Pb collisions with ALICE

Fabrizio Grosa on behalf of the ALICE Collaboration **Politecnico and INFN Torino**

A Large Ion Collider Experiment

INFN

Introduction

Time Projection Chamber

Detector dedicated to tracking and particle identification via dE/dx

V0 Forward rapidity detectors for MB trigger, centrality determination and estimation of the reaction plane

Inner Tracking System

Innermost silicon detector for tracking and reconstruction of primary and secondary vertices

Time of Flight

Particle identification with time-of-flight measurement

Heavy flavours as a probe of the Quark-Gluon Plasma

- Heavy flavours (i.e. charm and beauty quarks) are produced in the initial stages of the collision
 - Heavy-flavours production time: $t_{prod} \lesssim \hbar/m_{c(b)} \sim 0.1(0.04) \text{ fm}/c$
 - Quark-Gluon Plasma formation time at LHC [1]: $t_{form} \sim 0.3 \text{ fm}/c$
- Heavy flavours experience the whole system evolution interacting with the medium constituents

Observables

Nuclear modification factor R_{AA}: ratio of the measured yield in AA collisions to the one in pp interactions scaled by average number of binary nucleon-nucleon collisions (N_{coll})

Provides information about the **in-medium energy loss** mechanism, the **dependence on the mass of the quark** (comparing c and b quarks) and the **colour-charge dependence** (comparing heavy flavours with light hadrons)

Elliptic flow v_2 : second harmonic coefficient of the Fourier decomposition of the azimuthal distribution of final-state particles referred to the reaction plane ($\Psi_{\rm RP}$)

 $v_2 = \langle \cos 2(\varphi - \Psi_{\rm RP}) \rangle$

Provides information about the **participation of heavy flavours in the** collective expansion and their thermalisation in the Quark-Gluon Plasma

D+ in Pb-Pb collisions

Reconstruction of prompt D⁺ mesons in ALICE

D⁺ **mesons** and their charge conjugates are **reconstructed in the hadronic decay** channel

- tracks with proper charge combination Decay topology fully reconstructed
- Selection criteria applied on reconstructed geometrical quantities (e.g. the decay length) to improve signal over background ratio Signal extracted by **fitting** the **invariant-mass distribution** of the candidates

 $D^+ \to K^- \pi^+ \pi^+$ D⁺ candidates built **combining triplets of** Particle identification (PID) applied to the daughter tracks ALICE Preliminary 30-50% Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $D^+ \rightarrow K^- \pi^+ \pi^+$ and charge conj 5 < p₊ < 6 GeV/c ↓↓↓↓ $\mu = (1.871 \pm 0.001) \text{ GeV}/c^2$ $0.4 \vdash \sigma = (14 \pm 1) \text{ MeV}/c^2$ $S(3\sigma) = 1476 \pm 89$ 1.75 1.8 1.85 1.9 1.95 2 $M_{\mathrm{K}\pi\pi}$ (GeV/ c^2)

Efficiency correction computed with MC

- Measured nuclear modification factor for **D**⁺, **D**⁰ and **D**^{*+} in **semi-peripheral** collisions at $\sqrt{s_{NN}} = 5.02$ TeV compatible within uncertainties
- Suppression observed in semi-peripheral collisions **smaller** than the one in **central** collisions
- D-meson nuclear modification factor in semi-peripheral collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ **compatible** with the one measured at $\sqrt{s_{\rm NN}} = 2.76 \,{\rm TeV}$

- ✤ Measured v₂ for D⁺ and D⁰ in semi**peripheral** collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ **compatible** within uncertainties
- D-meson elliptic flow larger than zero for $2 < p_T < 10$ GeV/*c*, indicating that the azimuthal anisotropy of the system is

Result compatible with the measurement

transferred to the charm quarks

at √*s*_{NN} = 2.76 TeV

simulations based on HIJING events enriched with **PYTHIA** $c\bar{c}$ and $b\bar{b}$ pairs

Subtraction of D⁺ mesons coming from B-hadron decays based on theoretical calculations of their production cross section (FONLL [2])

Reaction plane for the elliptic flow measurement estimated with the reconstructed event plane

$$\Psi_2 = \frac{1}{2} tan^{-1} \left(\frac{Q_{2,y}}{Q_{2,x}} \right) \text{ where } Q_2 \text{ is the flow vector } Q_2 = \left(\begin{array}{c} \sum_{i=0}^{N_{tracks}} w_i \cos 2\varphi_i \\ \sum_{i=0}^{N_{tracks}} w_i \sin 2\varphi_i \end{array} \right)$$

* $D^+ v_2$ evaluated with the **anisotropy** between the **in-plane** and the **out-of-plane** regions, corrected for the event plane resolution R₂

Event-shape engineering for elliptic flow

- **D-meson** *v*² **measured** for classes of **events with different average** elliptic flow in the same centrality interval Events selected considering the reduced flow vector q₂
- **ALICE** Preliminary $q_2 = |Q_2|/\sqrt{M}$ Pb-Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ - 60% small-q^{TPC} — – 20% large-q₂^{TPC} Q_2 is the second harmonic **flow** vector • *M* is the **multiplicity** Centrality (%)

- The measurement suggests that the **D-meson** v_2 is **larger** for events with large average elliptic flow (large- q_2) and smaller for events with small average elliptic flow (**small-q**₂)
- Non-flow contributions and auto-correlation between measured *q*₂ and **D-meson** candidates are **included**, however their **contribution** is expected to be small

D⁺ in p-Pb collisions

Fraction of prompt D⁺ with a data-driven approach

Measured raw yield includes prompt D⁺ (which derives directly from the hadronisation of a **charm quark** or from the **decay of excited open charm** and **charmonium states**) and **feed-down D**⁺ (coming **from B-hadron** decays)

The fitting function includes three different contributions

$$\begin{aligned} F(d_0) &= S \cdot \{f_{\text{prompt}} \cdot F^{\text{prompt}}(d_0) + (1 - f_{\text{prompt}}) \cdot F^{\text{feed}-\text{down}}(d_0)\} + \\ &+ B \cdot F^{\text{bkg}}(d_0) \end{aligned}$$

- Fraction of prompt D mesons usually estimated using theoretical predictions of production cross sections for prompt and feed-down D mesons
- An alternative **data-driven approach** exploits the **different shape** of the distributions of the **transverse-plane impact parameter** to the primary vertex (d_0) [3]
- **Fraction of prompt D+ measured** via an **unbinned log-likelihood fit** of the **d**₀ distributions of D⁺ candidates in the invariant-mass region of the signal

where:

- *f*_{prompt} is the **fraction of prompt D**⁺ in the raw yield
- S and **B** are the **signal** and the **background** in the selected invariant-mass region
- **F**^{prompt} is the **detector resolution term** (Gaussian function plus a symmetric exponential term)
- **F**^{feed-down} is the **convolution** of the distribution which describes the **intrinsic impact parameter distribution of D from B** and the **resolution term**
- *F*^{bkg} is the function describing the **combinatorial background**, modelled by fitting the impact-parameter distribution obtained from the side-bands of the selected invariant-mass region
- The **fraction of prompt D mesons** with **data-driven** method is **compatible** with theory-driven method and can improve the result for the D⁰

Outlook

- * The measurement of the **D**⁺ nuclear modification factor and the elliptic flow in **Pb-Pb collisions at** $\sqrt{s_{NN}} = 5.02$ TeV will also be performed in different centrality classes
- * The data-driven approach for the determination of the fraction of prompt D⁺ will be applied to the measurement in Pb-Pb collisions to confirm the result obtained from theoretical calculations

[1] Liu, Fu-Ming and Liu, Sheng-Xu Phys. Rev. C 89, 034906 (2014)
[2] Cacciari, Matteo et al. JHEP 1210 (2012) 137 [3] ALICE Collaboration (Adam, Jaroslav et al.) Phys. Rev. C 94, 054908 (2016)