Initial energy density of p+p and A+A collisions

ZeFang Jiang¹, ChunBin Yang¹, Tamás Csörgő^{2,3} and Máté Csanád⁴ Key Laboratory of Quark and Lepton Physics, MOE and Institute of Particle Physics,

Central China Normal University, Wuhan, China

² Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary ³ EKU KRC, H– 3200 Gyöngyös, Mátrai út 36

ELTE, Eötvös Loránd University, Budapest, Pázmány P. s. 1/A, Hungary

Hydrodynamic Solutions

Exact, explicit solutions of accelerating relativistic hydrodynamics allow for a simple and natural description of highly relativistic p+p collisions and heavy ion collisions. An exact analytic solution for velocity field and pressure in Rindler coordinate $(\tau, \eta_R) = (\sqrt{t^2 - r^2}, \frac{1}{2} \ln \frac{t+r}{t-r})$ reads

$v = \tanh \lambda \eta_{\rm R},$ (1) $p = p_0 \left(\frac{\tau_0}{\tau}\right)^{\lambda \mathrm{d}\frac{\kappa+1}{\kappa}} \left(\cosh(\frac{\eta_R}{2})\right)^{-(\mathrm{d}-1)\phi_\lambda},$

Pseudo-rapidity distribution at RHIC and at LHC

Acceleration effect is extremely sensitive to quantify QGP properties and to investigate the QGP initial state. One can extracted acceleration parameter characteristics from precise $dN/d\eta$ for different centralities (Eq.1-3 and Table I case.e) and obtained a series of **improved initial energy** density estimation (for RHIC and LHC).

Fig. 1: Left: 200 GeV Au+Au Collision. Right: 2.76 TeV Pb+Pb collision. Charged particle pseudorapidity distribution: Relativistic hydrodynamic solution (solid line)+The data from RHIC and LHC (color dots).

Improved initial estimation combined RHIC and LHC

with $\alpha = \frac{2\lambda - 1}{\lambda - 1}$, $T_{eff} = T_f + \frac{m\langle \mu_t \rangle^2}{1 + m/T_f}$, $\bar{p}_T =$ $\frac{T_{eff}}{1+\sigma^2 u^2}$, and N_0 is a normalization parameter.

Improved ϵ_{ini} Estimation

Bjorken's energy density estimation

$$\epsilon_{\rm Bj} = \frac{\langle E \rangle dN}{(R^2 \pi) \tau_0 d\eta_0} = \frac{\langle E \rangle}{(R^2 \pi) \tau_0} \left. \frac{dN}{d\eta} \right|_{\eta = \eta_0} . \quad (4)$$

When the acceleration effect is taken into account, the corrected initial energy density estimation is:

$$\epsilon_{\rm corr} = \epsilon_{\rm Bj} (2\lambda - 1) (\frac{\tau_f}{\tau_0})^{\lambda - 1}.$$
 (5)

References

- T. Csörgő, M. I. Nagy, and M. Csanád, A New family of simple solutions of perfect fluid hydrodynamics, Phys. Lett. B63, 306(2008), arXiv: 0605070.
- [2] M. Csanád, T. Csörgő, ZeFang. Jiang and Chun-Bin. Yang, Initial energy density of $\sqrt{s} = 7$ and 8 TeV p+p collisions at the LHC, in: Universe, Special Issue On Quark-Gluon Plasma in the Early Universe and in Relativistic Heavy-Ion Collisions, arXiv:1609.07176.

In our previous work [1], we given a advanced estimation of the initial energy density in high energy collisions. Here we focus on the more systematic domain of initial estimation at RHIC and LHC, which takes acceleration effects (i.e. the work done by the pressure, and the modified change of the volume elements) into $\operatorname{account}(\operatorname{Eq.} 4-5)$.

Fig. 3: Left: Initial energy density, temperature and pressure as a function of multiplicity density. Right: Initial energy as a function of quark participant pairs N_{qpp} .

Acknowledgements

This work was supported by the bilateral Chinese-Hungarian governmental project (Grand No.TeT 12CN-1-2012-2016), the NNSF of China (Grant No.11435004), the support of the Hungarian OTKA grant NK-101438, the Ch. Simonyi Foundation, and the China CCNU PhD fund (No.2016YBZZ100). M. Cs. was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The supports are gratefully acknowl-_edged.

Fig. 4: Left: 7 and 8 TeV p+p collision large pseudo-rapidity distribution and initial energy density correction factor as a function of thermalization time [2]. Right: Initial energy density, temperature and pressure as a function of central multiplicity density at 7(left) and 8(right) TeV.