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Introduction

• Anisotropic medium effects of the QGP contribute to the self-energy of the
quarks.

• The real and imaginary parts of quark self-energy are related to the effective
mass and the generalized decay rates of the quarks.

• The quark self-energy for the case of a QGP with spheroidal momentum
anisotropy [1] has been calculated within HTL approximation before [2].

• Here, we calculate the quark self-energy for the more general case of the ellip-
soidal momentum anisotropy [3].

Anisotropic Quark Self-Energy

The general expression for the gauge-independent retarded quark self-energy in a
momentum-anisotropic system in the hard-loop (HL) approximation was first ob-
tained in Ref. [4]

Σ(K) =
CF
4
g2
∫

p

f (p)

|p|
P · γ
P ·K

,

where
• g is the QCD coupling, and the distribution function f (p) is the sum of the momentum distributions for quarks

and gluons f (p) ≡ 2 (n(p) + n̄(p)) + 4ng(p).

• P = (ωp,p) and K = (ω,k) are the Minkowski-space partonic momentum four-vectors,

• CF ≡ (N 2
c − 1)/2Nc, and

∫
p ≡

∫
d3p/(2π)3.

Ellipsoidal momentum-space anisotropy

For the case of ellipsoidal anisotropy, the local rest frame distribution function f (p)
is parametrized by

f (p) = fξ(p) = fiso

(
1

λ

√
p2 + ξx(p · x̂)2 + ξy(p · ŷ)2 + ξz(p · ẑ)2

)
,

where x̂, ŷ, and ẑ are Cartesian unit vectors in the local rest frame of the matter,
ξξξ ≡ (ξx, ξy, ξz) are anisotropy parameters corresponding to three spatial directions,
and λ is a temperature-like scale.
In this parametrization, fiso is a general isotropic distribution function which reduces
to the appropriate equilibrium distribution function in the isotropic equilibrium limit
(ξξξ = 0).

Integrations

In the ellipsoidally-anisotropic case, for a conformal system there are only two physical
anisotropy directions (transverse and longitudinal). This amounts to rearranging the
parameters and setting ξz−ξy

1+ξy
→ ξ1 ,

ξx−ξy
1+ξy
→ ξ2 ,

λ√
1+ξy
→ λ .

Then, we obtain
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.

where
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g2CF
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.

As a result, all dependence on the form of the underlying isotropic distribution func-
tion is subsumed into mq. Then, defining Σ(K) = γ0Σ0 + γ ·Σ , and x = cos θ,

Σi(K) =
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q

4π

∫ 2π
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where

a =
ω

k
− x cos θk ,

b = sin θk cosφk
√

1− x2 ,
c = sin θk sinφk

√
1− x2 ,

A = 1 + ξ1x
2 ,

s =
ξ2(1− x2)

A
,

v = (1,
√

1− x2 cosφ,
√

1− x2 sinφ, x) .

Splitting the integrand using a partial-fraction decomposition, the self-energy com-
ponents can be written as

Σi =
m2
q

4πk

∫ 1

−1
dx

8∑
j=1

λij Dj (i = 0, 1, 2, 3) ,

where Dj’s are single fractions which are easier to integrate over φ, and λij’s depend
only on the x variable.

Final Results

After integration over φ, one can express the self-energy components as one-dimensional integrals
over the variable x ≡ cos θ, we get e.g.
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 ,
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 ,
where the factors α0, αx, αy, αz, β0, βx, βy, βz, and ρ are also x-dependent.

Integrating numerically over x, we consider the following scaled components of quark self-energy

Σ̄0 ≡
kΣ0

m2
q

, Σ̄x ≡
1

sin θk cosφk

kΣx
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q

, Σ̄y ≡
1
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1
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.
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• The real and imaginary parts of Σ̄0, Σ̄x,
Σ̄y, and Σ̄z as a function of ω/k for
ξ1 = 10, θk = π/3, φk = π/6, and
ξ2 = {−0.2, 0, 1, 3}.
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• The real and imaginary parts of Σ̄0,

Σ̄x, Σ̄y, and Σ̄z as a function of ω/k

for ξ1 = 10, ξ2 = 3, θk = π/3, and

φk = {0, π/6, π/4, π/3}.

Conclusions

• We determined the self-energy of quarks in an ellipsoidally-anisotropic QGP by using
the method of partial-fraction decomposition together with numerical evaluation of
the resulting one-dimensional integrals.

• We find the dependence of self-energy components on both the polar and azimuthal
angles.

• The self-energy modifications due to the transverse anisotropies induce additional
angular dependence of the self-energy in transverse-momentum plane.

• These results set the stage for the calculation of the effects of ellipsoidal anisotropy
on the QGP collective flow and photon spectra.
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