Quark self-energy in an ellipsoidally anisotropic quark-gluon plasma

Babak S. Kasmaei, Mohammad Nopoush, and Michael Strickland Department of Physics, Kent State University, Kent, OH 44242 United States

Introduction

- Anisotropic medium effects of the QGP contribute to the self-energy of the quarks
- The real and imaginary parts of quark self-energy are related to the effective mass and the generalized decay rates of the quarks
- The quark self-energy for the case of a QGP with spheroidal momentum anisotropy [1] has been calculated within HTL approximation before [2].
- Here, we calculate the quark self-energy for the more general case of the ellipsoidal momentum anisotropy [3].

Anisotropic Quark Self-Energy

The general expression for the gauge-independent retarded quark self-energy in a momentum-anisotropic system in the hard-loop (HL) approximation was first obtained in Ref. [4]

$$
\Sigma(K)=\frac{C_{F}}{4} g^{2} \int_{\mathbf{p}} \frac{f(\mathbf{p})}{|\mathbf{p}|} \frac{P \cdot \gamma}{P \cdot K}
$$

where

- g is the QCD coupling, and the distribution function $f(\mathbf{p})$ is the sum of the momentum distributions for quarks and gluons $f(\mathbf{p}) \equiv 2(n(\mathbf{p})+\bar{n}(\mathbf{p}))+4 n_{g}(\mathbf{p})$.
- $P=\left(\omega_{p}, \mathbf{p}\right)$ and $K=(\omega, \mathbf{k})$ are the Minkowski-space partonic momentum four-vectors,
- $C_{F} \equiv\left(N_{c}^{2}-1\right) / 2 N_{c}, \quad$ and $\quad \int_{\mathrm{P}} \equiv \int d^{3} p /(2 \pi)^{3}$.

Ellipsoidal momentum-space anisotropy

For the case of ellipsoidal anisotropy, the local rest frame distribution function $f(\mathbf{p})$ is parametrized by

$$
f(\mathbf{p})=f_{\boldsymbol{\xi}}(\mathbf{p})=f_{\text {iso }}\left(\frac{1}{\lambda} \sqrt{\mathbf{p}^{2}+\xi_{x}(\mathbf{p} \cdot \hat{\mathbf{x}})^{2}+\xi_{y}(\mathbf{p} \cdot \hat{\mathbf{y}})^{2}+\xi_{z}(\mathbf{p} \cdot \hat{\mathbf{z}})^{2}}\right),
$$

where \hat{x}, \hat{y}, and \hat{z} are Cartesian unit vectors in the local rest frame of the matter, $\boldsymbol{\xi} \equiv\left(\xi_{x}, \xi_{y}, \xi_{z}\right)$ are anisotropy parameters corresponding to three spatial directions, and λ is a temperature-like scale.
In this parametrization, $f_{\text {iso }}$ is a general isotropic distribution function which reduces to the appropriate equilibrium distribution function in the isotropic equilibrium limit $(\xi=0)$.

Integrations

In the ellipsoidally-anisotropic case, for a conformal system there are only two physical anisotropy directions (transverse and longitudinal). This amounts to rearranging the parameters and setting $\frac{\xi_{z}-\xi_{y}}{1+\xi_{y}} \rightarrow \xi_{1}, \frac{\xi_{x}-\xi_{y}}{1+\xi_{y}} \rightarrow \xi_{2}, \frac{\lambda}{\sqrt{1+\xi_{y}}} \rightarrow \lambda$.
Then, we obtain

$$
\Sigma(K)=\frac{m_{q}^{2}}{4 \pi} \int d \Omega\left(1+\xi_{2}(\hat{p} \cdot \hat{\mathbf{x}})^{2}+\xi_{1}(\hat{p} \cdot \hat{\mathbf{z}})^{2}\right)^{-1} \frac{P \cdot \gamma}{P \cdot K} .
$$

where

$$
m_{\mathrm{q}}^{2}=\frac{g^{2} C_{F}}{8 \pi^{2}} \int_{0}^{\infty} d p p f_{\mathrm{iso}}\left(\frac{p}{\lambda}\right) .
$$

As a result, all dependence on the form of the underlying isotropic distribution function is subsumed into m_{q}. Then, defining $\Sigma(K)=\gamma^{0} \Sigma_{0}+\gamma \cdot \boldsymbol{\Sigma}$, and $x=\cos \theta$,

$$
\Sigma^{i}(K)=\frac{m_{q}^{2}}{4 \pi} \int_{0}^{2 \pi} d \phi \int_{-1}^{1} d x \frac{1}{A\left(1+s \cos ^{2} \phi\right)} \frac{v^{i}}{a-b \cos \phi-c \sin \phi}
$$

where

$$
\begin{array}{ll}
a=\frac{\omega}{k}-x \cos \theta_{k}, & A=1+\xi_{1} x^{2}, \\
b=\sin \theta_{k} \cos \phi_{k} \sqrt{1-x^{2}}, & s=\frac{\xi_{2}\left(1-x^{2}\right)}{A}, \\
c=\sin \theta_{k} \sin \phi_{k} \sqrt{1-x^{2}}, & v=\left(1, \sqrt{1-x^{2}} \cos \phi, \sqrt{1-x^{2}} \sin \phi, x\right)
\end{array}
$$

Splitting the integrand using a partial-fraction decomposition, the self-energy components can be written as

$$
\Sigma^{i}=\frac{m_{q}^{2}}{4 \pi k} \int_{-1}^{1} d x \sum_{j=1}^{8} \lambda_{j}^{i} D_{j} \quad(i=0,1,2,3)
$$

where D_{j} 's are single fractions which are easier to integrate over ϕ, and λ_{j}^{i} 's depend only on the x variable

Final Results

After integration over ϕ, one can express the self-energy components as one-dimensional integrals over the variable $x \equiv \cos \theta$, we get e.g.

$$
\begin{aligned}
& \Sigma_{0}=\frac{m_{q}^{2}}{2 k} \int_{-1}^{1} d x \frac{1}{A \rho}\left[\alpha_{0} \sqrt{\frac{(a+b)^{2}}{a^{2}-\left(b^{2}+c^{2}\right)}}+s \beta_{0} \sqrt{\frac{1}{1+s}}\right] \\
& \Sigma_{x}=\frac{m_{q}^{2}}{2 k} \int_{-1}^{1} d x \frac{1}{A \rho}\left[\alpha_{x} \sqrt{\frac{(a+b)^{2}}{a^{2}-\left(b^{2}+c^{2}\right)}}+s \beta_{x} \sqrt{\frac{1}{1+s}}\right] \\
& \Sigma_{y}=\frac{m_{q}^{2}}{2 k} \int_{-1}^{1} d x \frac{1}{A \rho}\left[\alpha_{y} \sqrt{\frac{(a+b)^{2}}{a^{2}-\left(b^{2}+c^{2}\right)}}+s \beta_{y} \sqrt{\frac{1}{1+s}}\right] \\
& \Sigma_{z}=\frac{m_{q}^{2}}{2 k} \int_{-1}^{1} d x \frac{1}{A \rho}\left[\alpha_{z} \sqrt{\frac{(a+b)^{2}}{a^{2}-\left(b^{2}+c^{2}\right)}}+s \beta_{z} \sqrt{\frac{1}{1+s}}\right]
\end{aligned}
$$

where the factors $\alpha_{0}, \alpha_{x}, \alpha_{y}, \alpha_{z}, \beta_{0}, \beta_{x}, \beta_{y}, \beta_{z}$, and ρ are also x-dependent.
Integrating numerically over x, we consider the following scaled components of quark self-energy

$$
\bar{\Sigma}_{0} \equiv \frac{k \Sigma_{0}}{m_{\mathrm{q}}^{2}}, \quad \bar{\Sigma}_{x} \equiv \frac{1}{\sin \theta_{k} \cos \phi_{k}} \frac{k \Sigma_{x}}{m_{\mathrm{q}}^{2}}, \quad \bar{\Sigma}_{y} \equiv \frac{1}{\sin \theta_{k} \sin \phi_{k}} \frac{k \Sigma_{y}}{m_{\mathrm{q}}^{2}}, \quad \bar{\Sigma}_{z} \equiv \frac{1}{\cos \theta_{k}} \frac{k \Sigma_{z}}{m_{\mathrm{q}}^{2}} .
$$

- The real and imaginary parts of $\bar{\Sigma}_{0}, \bar{\Sigma}_{2}$ $\bar{\Sigma}_{y}$, and $\bar{\Sigma}_{z}$ as a function of ω / k for $\xi_{1}=10, \theta_{k}=\pi / 3, \phi_{k}=\pi / 6$, and $\xi_{2}=\{-0.2,0,1,3\}$.

- The real and imaginary parts of $\bar{\Sigma}_{0}$, $\bar{\Sigma}_{x}, \bar{\Sigma}_{y}$, and $\bar{\Sigma}_{z}$ as a function of ω / k for $\xi_{1}=10, \xi_{2}=3, \theta_{k}=\pi / 3$, and $\phi_{k}=\{0, \pi / 6, \pi / 4, \pi / 3\}$.

Conclusions

- We determined the self-energy of quarks in an ellipsoidally-anisotropic QGP by using the method of partial-fraction decomposition together with numerical evaluation of the resulting one-dimensional integrals.
- We find the dependence of self-energy components on both the polar and azimuthal angles.
- The self-energy modifications due to the transverse anisotropies induce additional angular dependence of the self-energy in transverse-momentum plane.
- These results set the stage for the calculation of the effects of ellipsoidal anisotropy on the QGP collective flow and photon spectra.

Acknowledgements/References

M. Strickland and M. Nopoush were supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0013470.
[1] P. Romatschke and M. Strickland, Phys. Rev. D 68, 036004 (2003).
[2] B. Schenke and M. Strickland, Phys. Rev. D 74, 065004 (2006).
[3] B. S. Kasmaei, M. Nopoush, and M. Strickland, Phys. Rev. D 94, 125001 (2016)
[4] S. Mrówczyński and M. H. Thoma, Phys. Rev. D 62, 036011 (2000)

