

# Analysis status on low-momentum direct-photons in Cu+Cu collisions at $\sqrt{s_{NN}}$ = 200 GeV at PHENIX

Tomoya Hoshino for the PHENIX collaboration Quark Physics Laboratory (Hiroshima University)



#### Motivation

- Photons and dileptons are good probes to understand space-time evolution of matter produced in heavy ion collisions.
- The PHENIX experiment has measured and published spectra of lowmomentum direct-photons:
  - Through virtual photon emission in p+p, d+Au, and Au+Au at 200 GeV [1, 2]
  - Through external conversions in Au+Au at 200 GeV [3]
- Direct photon measurement in Cu+Cu at 200 GeV can help to understand the system size dependence of direct photon production in heavy ion collisions.





## Virtual direct photon



Dielectron mass distribution with cocktail comparison for Au+Au (MB) events for  $1.0 < p_{T} < 1.5 \text{ GeV/c } [1].$ 

Virtual direct photons (e<sup>+</sup>e<sup>-</sup> pairs) are measured as an excess compared to hadronic cocktail after subtracting uncorrelated and correlated backgrounds. Above the  $\pi^0$  mass the excess is clearly visible. The excess is quantified with a two-component fit.

$$f(m_{ee};r) = (1-r)f_c(m_{ee}) + rf_{dir}(m_{ee})$$

Here  $f_c$  is the shape of the cocktail, and  $f_{dir}$ is the expected shape from the virtual direct photons.

### Direct photon spectrum



Direct photon spectra from Cu+Cu at 200 GeV. The black makers represent the measured direct photons, the red lines are fits (exponential + p+p) to the data, and the blue lines are fits to p+p data scaled by the nuclear overlap function  $T_{AA}$  representing the expected yield from pQCD process. A  $\pm 1\sigma$  error band is shown. An enhancement above the expected yield is observed in both of Min. Bias and central collisions.

## Integrated yield of thermal photons



photons" are calculated as a function of  $N_{\text{part}}$ . Direct photons from prompt process are subtracted to obtain the excess photons.

Integrated yield of "excess

The results is shown with published Au+Au results.

The Au+Au yield increases with  $AN_{\rm part}^{\alpha}$  where A is 7.70 × 10<sup>-4</sup> and  $\alpha$ is 1.35. The Cu+Cu results are consistent with Au+Au results.

## **Background estimation**

The combinatorial background is evaluated by the mixed-event method. So called "cross pairs" that originate decays of  $\pi^0$  and  $\eta$ simulated with EXODUS. "Jet pairs" that are produced by two electrons in a jet or back-to-back jets are simulated with PYTHIA8. The normalization of all backgrounds are determined with a 4-component fit to the like-sign mass e<sup>+</sup>e<sup>-</sup> distribution.

#### Hadronic cocktail

Electron pairs from hadronic decays are simulated using EXODUS. The input  $p_{\tau}$  spectrum for  $\pi^0$  meson is parameterized by a modified Hagedorn function fitted to PHENIX data from Cu+Cu collisions. All other mesons spectra are determined via m<sub>T</sub> scaling using measured meson to  $\pi^0$  ratios.



#### Open heavy flavor



e<sup>+</sup>e<sup>-</sup> pair from **PYTHIA8** simulation normalized to the measured ccbar cross section and  $N_{\text{coll}}$  scaled with  $N_{\text{coll}}$  [4]

## Decay photon spectrum

The direct photon spectrum is calculated from the decay photon spectrum and the direct photon fraction  $r_{\nu}$ .

$$\gamma^{\text{dir}} = r_{\nu}/(1 - r_{\nu}) \gamma^{\text{decay}}$$

The decay photon spectrum is obtained from the same EXODUS simulation used to determine the e<sup>+</sup>e<sup>-</sup> pair spectrum from hadron decays.

#### Data set and selections

#### Data set

Cu+Cu collisions at √s<sub>NN</sub> = 200 GeV collected during the run in 2005.

### **Event selection**

Minimum Bias trigger based on the Beam-Beam Counters (BBCs). An offline cut on the vertex position is applied |z| < 25 cm.

The centrality classes are determined by BBC charge.

#### Track selection and eID

Charged particles are reconstructed with the PHENIX Drift Chambers and Pad Chambers. Electrons are identified using EMCal and the RICH.

## The PHENIX experiment

#### **Electron identification**

Ring-imaging Cherenkov detector (RICH) and Electromagnetic calorimeter (EMCal)

#### **Momentum Measurement**

Drift chamber (DC)

Centrality, z-vertex, and reaction plane

Beam-Beam Counter



Beam View

### Simulations

#### **EXODUS**

EXODUS is a phenomenological event generator, which simulates the phase-space distribution of e<sup>+</sup>e<sup>-</sup> pairs from hadron decays.

## PYTHIA8

PYTHIA8 is used to calculate correlated e<sup>+</sup>e<sup>-</sup> pairs from jets and to estimate the e<sup>+</sup>e<sup>-</sup> pair contribution from ccbar production. PYTHIA8 is used with the CTEQ 5L parton distribution function.

Particles generated EXODUS/PYTHIA8 are passed through the PHENIX GEANT simulator.

# **Summary and Outlook**

- Direct photons are a good probe to determine the space-time evolution of the matter produced in heavyion collisions.
- Direct photon spectra from Cu+Cu are obtained for Min.Bias (0 - 94%) and 0 - 40% centrality.
- Inverse slopes and integrated yields measured in Cu+Cu collisions are consistent with those found in Au+Au collisions at similar  $N_{part}$ .

#### References

- [1] Physical Review C 87, 054907 (2013), PHENIX
- [2] Physical Review C 81, 034911 (2010), PHENIX
- [3] Physical Review C 91, 064904 (2015), PHENIX
- [4] Physical Review C 91, 014907 (2015), PHENIX