Excess of J/ ψ yield at very low p_T in A+A collisions from STAR

Wangmei Zha, for the STAR Collaboration University of Science and Technology of China

Abstract

J/ψ suppression in heavy-ion collisions due to color screening of quark and antiquark potential in the deconfined medium has been proposed as a signature of the QGP formation. Other mechanisms, such as the cold nuclear matter effects and charm quark recombination, are likely to contribute to the observed modification in heavy-ion collisions. Recently, a significant excess of J/ψ yield at very low | transverse momentum (p_T < 0.3 GeV/c) has been observed by the ALICE collaboration in peripheral hadronic Pb+Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ = 2.76 TeV at forward-rapidity, which can not be explained within the scenarios mentioned above. The observed excess may originate from the coherent photoproduction of J/ψ, which would be very challenging for the existing coherent photoproduction models developed for ultra-peripheral collisions. Measurements of J/ψ production at very low p_T in different collision energies, collision systems, and centralities can shed new lights on the origin of the excess.

In this poster, we report on the STAR measurements of J/ ψ production at very low p_T in hadronic Au+Au collisions at $\sqrt{s_{\rm NN}}$ = 200 GeV and U+U collisions at $\sqrt{s_{\rm NN}}$ = 193 GeV at mid-rapidity. Centrality dependence of J/ψ production yields and nuclear modification factors will be presented.

ALICE, Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 2.5 < y < 4 $0 \le p_{\scriptscriptstyle T} < 0.3$ GeV/c, global syst = ± 15.7 % $0.3 \le p_{\scriptscriptstyle T} < 1$ GeV/c, global syst = ± 15.1 % $1 \le p_{\scriptscriptstyle \perp} < 8 \text{ GeV/c}$, global syst = ± 11.5 % Common global syst = ± 6.8 % 0.8 Figure from Ref. [1]

Motivation

- ✓ Significant enhancement of J/ψ yield observed in p_T interval 0 - 0.3 GeV/c for peripheral collisions (50 – 90%) by ALICE.
- ✓ Cannot be described by hadronic production modified by the hot medium or cold nuclear matter effects!
- ✓ Originate from coherent photon-nucleus interactions?
- Measurements of J/ψ yield at very low p_T in hadronic collisions (U+U and Au+Au) from STAR:
 - \triangleright Enhancement of J/ ψ yield at very low p_T?
 - ➤ If so, what are the properties and the origin of the excess?
 - > p_T, centrality and system size dependence of the excess; t distribution.

Introduction to photon interactions in A+A collisions

✓ This large flux of quasi-real photons makes a hadron collider also a photon collider!

interactions

- > Photon-nucleus interactions:
 - > Coherent: emitted photon interacts with the entire target nucleus.
 - ➤ Incoherent: emitted photon interacts with nucleon or parton individually.

Details can be found in Ref. [2]

Features of coherent photon-nucleus interactions

- Coherently:
 - ✓ Both nuclei remain intact
 - ✓ Photon/Pomeron wavelength $\lambda = \frac{n}{n} > R_A$
 - ✓ p_T < h/R_A ~30 MeV/c for heavy ions
 - ✓ Strong couplings $(Z\alpha_{EM} \sim 0.6)$ → large cross sections
- Interference:
 - √ Two indistinguishable processes (photon) from A_1 or A_2)
 - √ Vector meson → opposite signs in amplitude
 - ✓ Significant destructive interference for p_T << 1/

STAR detector

Solenoidal Tracker At RHIC: $-1 < \eta < 1, 0 < \phi < 2\pi$

- ➤ Large acceptance: $|\eta| < 1, 0 < \phi < 2\pi$
- ➤ Time Projection Chamber (TPC) – tracking, particle identification, momentum
 - ➤ Time of Flight detector (TOF) – particle identification

interactions

➤ Barrel ElectroMagnetic Calorimeter (BEMC) – electron identification, triggering

Results I --- J/ψ production at very low p_T

J/ψ signal

 J/ψ R_{AA} as a function of p_T in different centrality bins

STAR Preliminary U+U 40-60% □ U+U 60-80% ⊆⊢10^{–5} ž 10⁻⁶ Au+Au 20-40% Au+Au 40-60% ■ Au+Au 60-80% 10^{-7} Fit function: $\frac{d^2N}{p_Tdp_T} = a \times \frac{1}{(1+b^2p_T^2)^n}$ 10⁻⁸ 10⁻² 10^{-1} 10 p_{_} (GeV/c) J/ψ yield as a function of p_T **STAR Preliminary** Au+Au 200 GeV **시 3.5**

J/ψ yield as a function of centrality

✓ Excess observed in peripheral collisions (40-80%) for p_T < 0.2 GeV/c! ✓ No significant centrality dependence in Au+Au collisions (30 – 80%)!

Results Π --- J/ ψ dN/dt distribution at very low p_T

☐ The slope from the exponential fit reflects the shape of the target.

- ✓ Indication of interference!
- ✓ Slope parameter (196±31 [GeV/c]⁻²) consistent with the Au nucleus size (199)!

Summary

- ✓ Significant excess of J/ ψ yield at p_T interval 0 0.2 GeV/c is observed for peripheral collisions Au+Au and U+U collisions (40 – 80%).
- √The excess shows no significant centrality dependence in Au+Au collisions (30) - 80%), which is beyond the expectation from the hadronic production.
- √ The properties of the excess are consistent with the characteristics of coherent
- photon-nucleus interactions. ✓ Similar dN/dt distribution to that in the case of ultra-peripheral collisions.
- ✓ Indication of interference at p_T interval 0 0.03 GeV/c.
- √The extracted nuclear form factor slope is consistent with nucleus size.

References

- [1] J. Adam et al. (ALICE) 2016 Phys. Rev. Lett. 116 222301 [2] A. Bertulani, S. Klein and J. Nystrand 2005 Ann. Rev. Nucl. Part. Sci.55 271
- [3] S. Klein 2000 Phys. Rev. Lett. 84 2330

