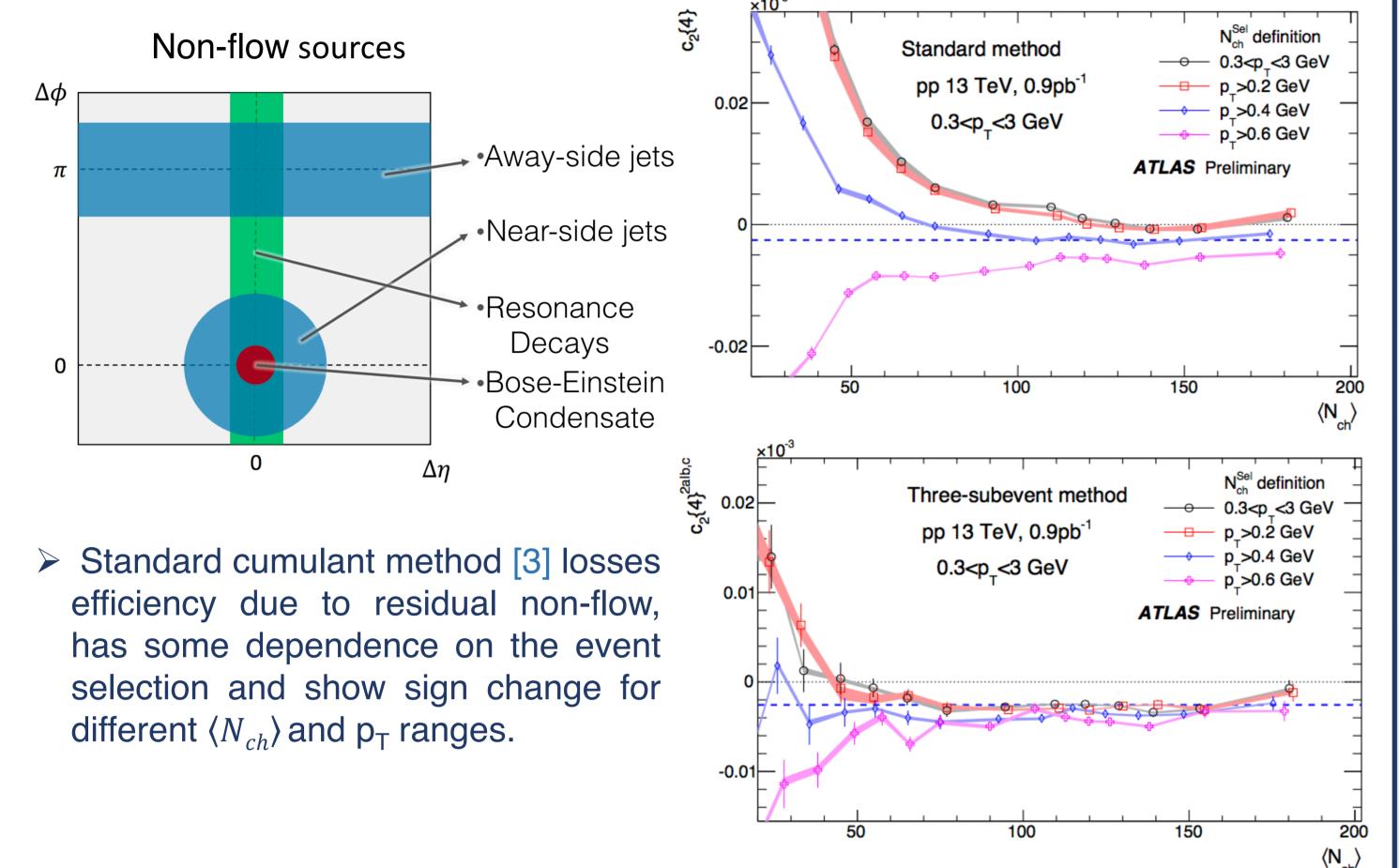
Measurement of multi-particle azimuthal correlations with the subevent method in pp and p+Pb collisions with the ATLAS detector

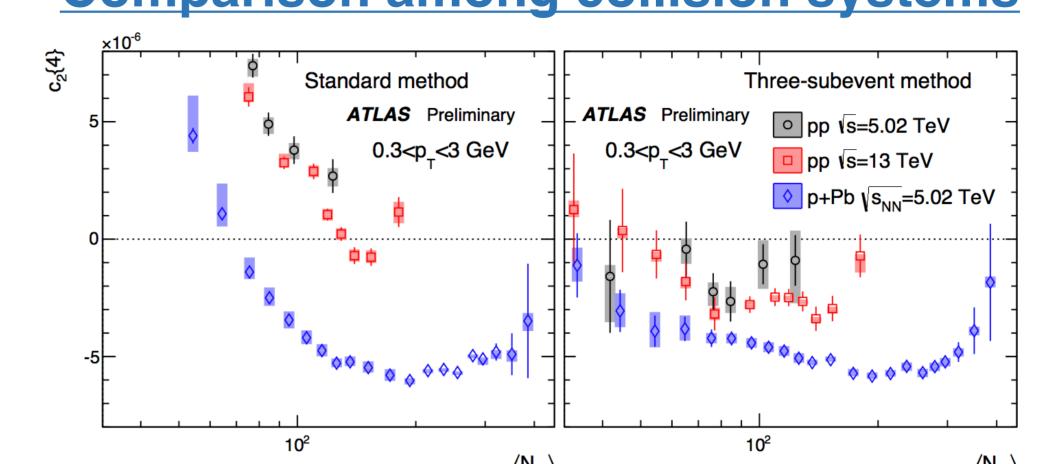
Arabinda Behera for the ATLAS Collaboration

Stony Brook University

Motivation

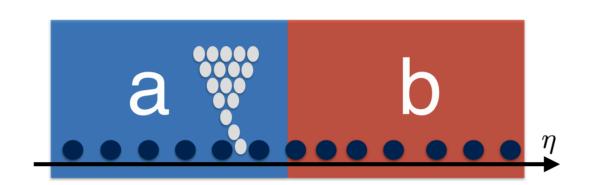
> Multiparticle cumulants [2] are useful to study the origin of ridge observed in small systems like pp and p+Pb.



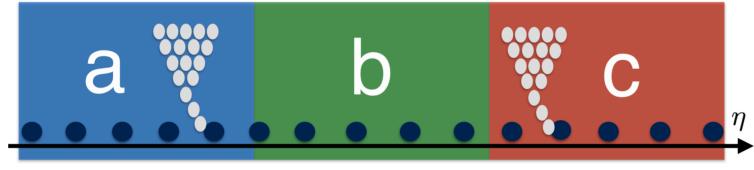


Comparison among collision systems

- > Two-subevent and three-subevent methods [1] are proposed to enhance the suppression of non-flow and remove any dependence on event selection.
- > Two-subevent can suppress most nonflow contributions like near-side jets.

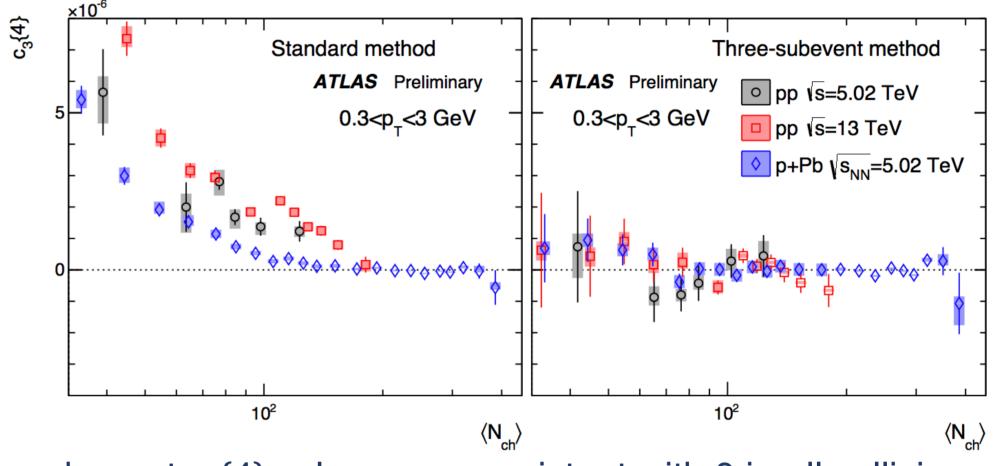


Three-subevent can further remove away-side jets.



Analysis Method

- \succ Large positive c₂{4} values in standard method for small $\langle N_{ch} \rangle$ is likely due to non-flow correlations.
- \succ Three subevent-method shows correct sign for $c_2{4}$ in all collision systems.
- > In both methods the hierarchy is : (pp data at $\sqrt{s} = 5.02 TeV$) > (pp data at $\sqrt{s} = 13 \, TeV$) > (*p*+Pb data $\sqrt{s} = 5.02 \, TeV$)



- \succ In three-subevent c₃{4} values are consistent with 0 in all collision systems.
- > Standard method shows hierarchy in $c_3{4}$ due to non-flow.

Comparison	of $v_{2}{4}$	with v_2 {2}	and relation	to N _s

> [∼] 0.1	pp, $\sqrt{s} = 5.02 \text{ TeV}$, 0.17 pb ⁻¹ 0.3 <p<sub>7<3 GeV ATLAS Preliminary N_{ch}^{Sel} for 0.3<p<sub>7<3 GeV</p<sub></p<sub>	$pp, \sqrt{s} = 13 \text{ TeV}, 0.9 \text{ pb}^{-1}$ $0.3 < p_{T} < 3 \text{ GeV} \qquad ATLAS \text{ Preliminary}$ $N_{ch}^{Sel} \text{ for } 0.3 < p_{T} < 3 \text{ GeV}$	$p+Pb, \sqrt{s_{NN}} = 5.02 \text{ TeV}, 28 \text{ nb}^{-1}$ $0.3 < p_{T} < 3 \text{ GeV} ATLAS \text{ Preliminary}$ $N_{ch}^{Sel} \text{ for } 0.3 < p_{T} < 3 \text{ GeV}$	
ŀ		4		

 \succ In multi-particle cumulant method, 2k-particle azimuthal correlations $\langle 2k \rangle$ and cumulants $c_n{2k}$ are calculated using per-particle normalised flow vectors q_k and factor ω_k

$$q_{n;k} \equiv \frac{\sum_{i} w_i^k e^{in\phi_i}}{\sum_{i} w_i^k} \equiv q_{n;k} e^{in\Psi_n}, \omega_k \equiv \frac{\sum_{i} w_i^{k+1}}{\left(\sum_{i} w_i\right)^{k+1}}$$

Two-subevent method [1] :

$$\langle 2 \rangle_{a|b} = \langle e^{in(\phi_1^a - \phi_2^b)} \rangle = Re[\mathbf{q}_{n,a}\mathbf{q}_{n,b}^*]$$

$$\langle 4 \rangle_{2a|2b} = \langle e^{in(\phi_1^a + \phi_2^a - \phi_3^b - \phi_4^b)} \rangle = \frac{\left(\mathbf{q}_n^2 - \omega_1\mathbf{q}_{2n}\right)_a \left(\mathbf{q}_n^2 - \omega_1\mathbf{q}_{2n}\right)_b^*}{(1 - \omega_1)_a (1 - \omega_1)_b}$$

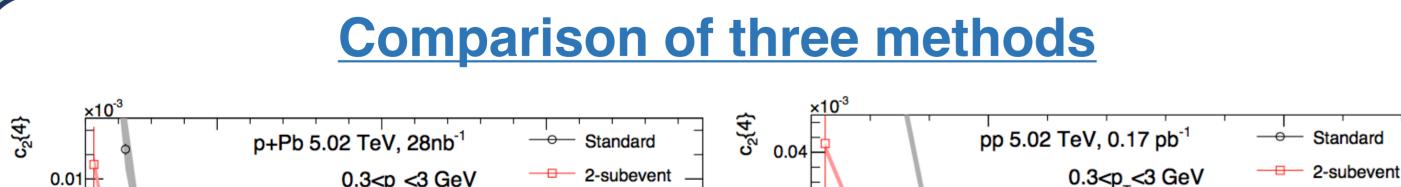
$$c_n^{2a|2b}\{4\} = \langle \langle 4 \rangle \rangle_{2a|2b} - 2\langle \langle 2 \rangle \rangle_{a|b}^2$$

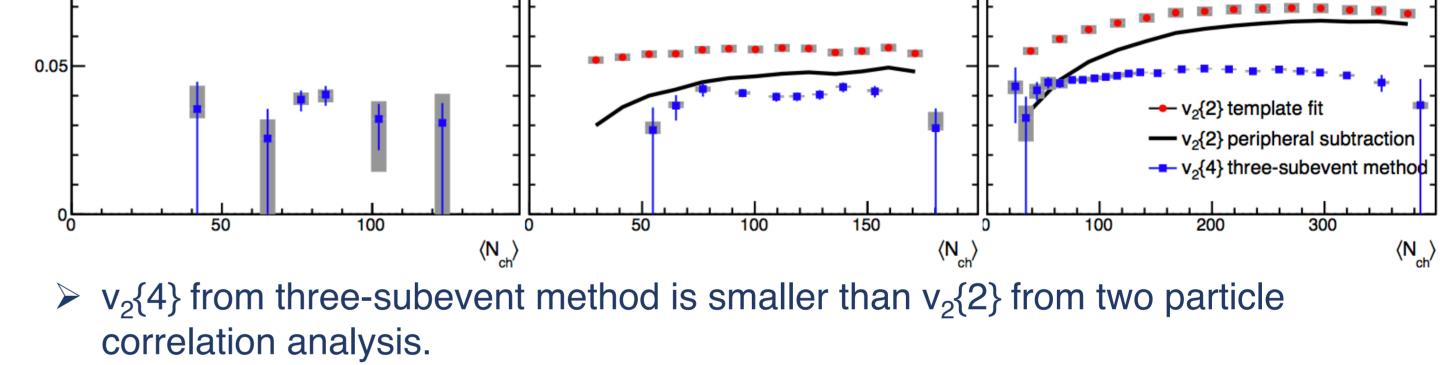
Three-subevent method [1]:

p+Pb.

$$\langle 4 \rangle_{2a|b,c} = \langle e^{in(\phi_1^a + \phi_2^a - \phi_3^b - \phi_4^c)} \rangle = \frac{(\mathbf{q}_n^2 - \omega_1 \mathbf{q}_{2n})_a \mathbf{q}_{n,b}^* \mathbf{q}_{n,c}^*}{1 - \omega_{1,a}}$$

 $C_n^{-a|v,v}\{4\} = \langle\langle 4\rangle\rangle_{2a|b,c} - 2\langle\langle 2\rangle\rangle_{a|b}\langle\langle 2\rangle\rangle_{a|c}$

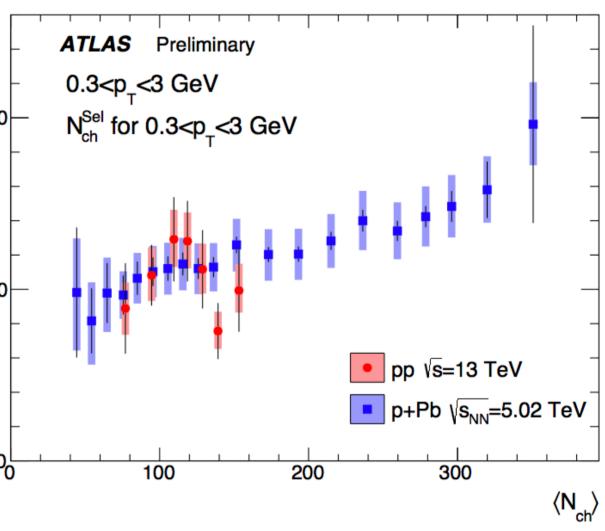




> The difference is interpreted as effect of event-by-event flow fluctuation associated with the effective number of sources of particle production [4].

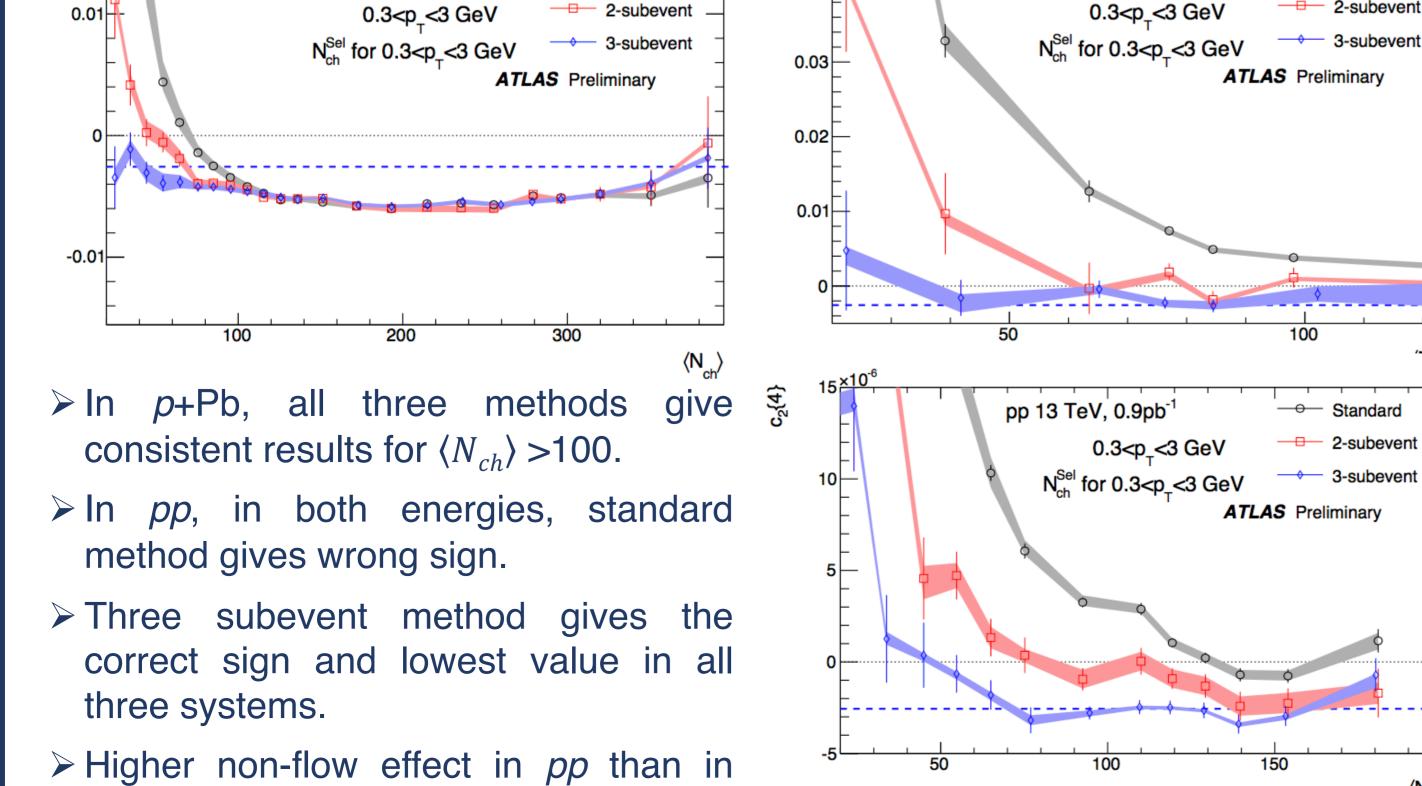
$$\frac{v_2\{4\}}{v_2\{2\}} = \left[\frac{4}{(3+N_s)}\right]^{1/4} \text{ or } N_s = \frac{4v_2\{2\}^4}{v_2\{4\}^4} - 3^{20}$$

- > Model calculation shows increase in with $\langle N_{ch} \rangle$ in *p*+Pb collisions upto N_S ~ 20 the highest multiplicity class.
- \succ For pp, N_S is approximately consistent w *p*+Pb for comparable $\langle N_{ch} \rangle$.



Summary

>Sensitivity to event class averiging of $c_2{4}$ is high in standard cumulant method, small in two-subevent and almost negligible in three-subevent method.



 \geq Negative c₂{4} is observed in all three collision system, with the magnitude independent of $\langle N_{ch} \rangle$, except in p+Pb having a slight decrease at high $\langle N_{ch} \rangle$.

Single particle $v_2{4}$ is smaller than $v_2{2}$ from two-particle correlation and the ratio is used, in a model framework, to infer the number of sources N_S in initial state collision geometry.

 $> N_{s}$ is found to increase with $\langle N_{ch} \rangle$ in p+Pb and reaches 20 in high multiplicity events.

Reference

[1] J. Jia, M. Zhou, and A. Trzupek, arXiv:1701.03830 [nucl-th].

- [2] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, Phys. Rev. C 63 (2001) 054906
- [3] A. Bilandzic, R. Snellings, and S. Voloshin, Phys. Rev. C 83 (2011) 044913

[4] L. Yan and J.-Y. Ollitrault, Phys. Rev. Lett. 112 (2014) 082301, arXiv:1312.6555 [nucl-th]

 $\langle N_{ch} \rangle$

