Forward/Backward asymmetry of v_n in Cu+Au at RHIC-PHENIX

Azimuthal anisotropies of particle production in high energy heavy ion collisions have proven to be an excellent tool for investigating the initial geometry and the bulk properties of the Quark Gluon Plasma (QGP). Azimuthal anisotropy, measured through Fourier coefficients v_n, have been measured at mid-rapidity and are used to constrain the initial geometry and viscosity-over-entropy ratio eta/s of the QGP. Although there are many experimental observables and theoretical models, there are still uncertainties of the initial geometry and the eta/s. Measurements of v_n at forward/backward rapidity provide further insight into initial geometry. It is interesting to measure the v_n coefficients at forward/backward rapidity in Cu+Au collisions, because of the asymmetry in number of participants and geometry in forward and backward direction. In this poster, we will present our work to measure forward/backward asymmetry of v_n coefficients at pseudorapidity 3<|eta|<4 in Cu+Au collisions in comparison to results from Au+Au and Cu+Cu collisions.

Preferred Track

Collective Dynamics

Collaboration

PHENIX

Primary authors: Mr NAKAGOMI, Hiroshi (Tsukuba University); NAKAGOMI, Hiroshi (Tsukuba University)

Presenters: Mr NAKAGOMI, Hiroshi (Tsukuba University); NAKAGOMI, Hiroshi (Tsukuba University)

Session Classification: Poster Session