Reconstruction of particles produced at different stages of heavy ion collision in the CBM experiment at FAIR

V. Akishina ${ }^{1}$, I. Kisell ${ }^{1,2,3}$, P. Kisell ${ }^{1,4}$, P. Senger ${ }^{3}$, I. Vassiliev ${ }^{3}$, M. Zyzak ${ }^{3}$ (for the CBM Collaboration) 1 - Goethe University, Frankfurt am Main, Germany
2 - Frankfurt Institute for Advanced Studies, Frankurt am Main, Germany
3

Compressed Baryonic Matter (CBM) experiment at FAIR

he Compressed Baryonic Matter (CBM) experiment will be of the major scientific pillars of the future Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. The goal of the CBM research program is to explore the QCD phase diagram in the region of high net baryon densities using high-energy nucleus-nucleus collisions. This ncludes the study of the equation-of-state of nuclear matter at high transitions. The CBM detector is designed to measure both bulk observables with large acceptance and rare diagnostic probes such as charmed particles and vector mesons decaying into lepton pairs.

Future fixed-target heavy-ion experiment 105-107 collisions per second Up to 1000 charged particles/collision Non-homogeneous magnetic field Double-sided strip detectors
Free streaming data
No hardware triggers
On-line event reconstruction and selection
(1) Search for long-lived primary particles

Cellular Automaton (CA) track finde

1. Build short track segments.
. Build short track segments.
estimate their possible position on a model,
2. Tree structures appear,
collect segments into track candidates.
3. Select the best track candidates

CBM will explore the QCD phase diagram in the region of high baryon densities
(2) Search for short-lived particles with charged daughters

$\bar{\Omega}^{+} \rightarrow \bar{\Lambda} \mathrm{K}^{+}$
$\rightarrow \overline{\mathrm{p}} \pi^{+}$

KFParticle Lambda(P, Pi);
Lambda.SetMassConstrai KFParticle Omega(K, Lambda);
PV - $=(\mathrm{P}, \mathrm{P}, \mathrm{K})$;
$\mathrm{PV}+=$ Omega;
$\mathrm{PV}+=$ Omega; ;
(K, Lambda). SetProductionVertex (O
(P, Pi).SetProductionVertex(Lambda);
// construct anti Lambda // improve momentum and / clean the primary vertex /add Omega to the prim $/$ Omega is fully fitted $/ / p$, pi are fully fitted

State vector Position, direction, momentum and energy
$r=\left\{x, y, z_{l} p_{x}, p_{y}, p_{z} E\right\}$

Concept:
Mother and daughter particles have the same state vector and are treated in the same way - Reconstruction of decay chain

Kalman filter based
Geometry independen

- Vectorized Uncomplicated usage

Functionality:
Construction of short-lived particles
Addition and subtraction of particles - Transport

Calculation of an angle between particles Calculation of distances and deviations Constraints on mass, production point and decay length - KF Particle Finder
(3) Search for short-lived particles with one neutral daughter

One of possible signals of QGP formation is enhanced strangeness production. Being abundant particles (several particles per collision are produced at the CBM energies), Σ^{+}and Σ^{-}carry out large fraction of produced strange quarks. Reconstruction of Σ-particles together with other strange particles completes the picture of strangeness production and allows to compare yields of Σ and Σ^{*}, that can be also an indication of the QGP phase. Reconstruction of Σ-particle will open a possibility to investigate H-dybarion objects, if such exist, by the decay channel $\Sigma-p$, which is expected to be the dominant one

Approach
Σ^{+}and Σ^{-}have only channels with at least one neutral daughter
A lifetime is sufficient to be registered by the tracking system: $c \tau=2.4 \mathrm{~cm}$ for Σ^{+}and $c t=4.4 \mathrm{~cm}$ for Σ^{-}.
Cannot to be identified by the PID detectors.
Identification is possible by the decay topology using the missing mass method:

1. Find tracks of \sum and its charged

 daughterin STS and MV

Reconstruct \sum mass spectrum from the charged and obtained neutral daughters

The method can be applied for reconstruction of other strange particles. Their investigation will allow to recover the efficiency of the corresponding particles and to investigate systematic errors comparing yields of different deca channels.

Reconstruction of short-lived particles with one neutral daughter using the missing mass method
Short-lived particle probes of different stages in collision

[^0]\checkmark CBM will explore the QCD phase diagram in the region of high net baryon densities
\checkmark Efficient and clean reconstruction of long-lived primary particles with the CA track finder
\checkmark KF particle finder is a universal platform for short-lived particles reconstruction and physics analysis in on-line and off-line modes
\checkmark Reconstruction is highly parallelized and vectorized for use on many-core CPU/Phi/GPU computer architectures
\checkmark Clean reconstruction of long- and short-lived particles produced at different stages of heavyion collisions

[^0]: Clean reconstruction of short-lived particles produced at different stages of heavy-ion collisions

