PHENIX results on charged-hadron azimuthal anisotropies in Au+Au collisions at center-of-mass energies from 39 to 200 GeV

Maya Shimomura for the PHENIX Collaboration
Nara Women’s University
Contents

• Energy dependence of v_n in Au+Au
• Forward/Backward v_n in Cu+Au
• v_2 at high p_T at 200 GeV in Au+Au
Azimuthal anisotropic observables

Anisotropic particle production is characterized by Fourier Coefficient v_n.

\[
\frac{dN}{d\phi} \propto 1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\phi - \Psi_n))
\]

\[
v_n = \langle \cos[n(\phi - \Psi_n)] \rangle, \quad n = 1, 2, 3, \ldots
\]

Initial geometrical anisotropy: ε_n

\[\downarrow\]

Momentum anisotropy: v_n

v_n is sensitive to
- Initial condition
- QGP properties (η/s, partonic level flow)

2017/2/8

vn_PHENIX/QM2017 M.Shimomura
Energy dependence of v_n
v_2 at energy scan

Aim: to map out the QCD phase diagram.

\[v_2 \text{ is not changing from 39 -200 GeV within uncertainty.} \]

How about higher order harmonic v_3 ?

2017/2/8 vn_PHENIX/QM2017 M.Shimomura
v_3 at 200, 62.4 and 39GeV
Ratio of v_3 (39,62 GeV)/v_3(200 GeV)

v_3 is also saturated for 39 – 200 GeV.
Forward/Backward v_n in Cu+Au

Details are described in Hiroshi Nakagomi’s Poster[K03]
\(v_n \) in Cu+Au (mid-rapidity)

Cu+Au collisions provide additional insight of initial geometry(\(\varepsilon_n \)) effect.

- \(v_2/\text{eccentricity}(dN/d\eta) \) does not depend on the collision systems at mid-rapidity.
How about forward and backward?

Possibilities
1. Asymmetric initial geometry due to initial-state fluctuations along η: $\varepsilon_n(\eta) \neq \varepsilon_n(-\eta)$
2. Twisted plane azimuth: $\Psi_n(\eta) \neq \Psi_n(-\eta)$
3. Asymmetric energy density: $dN/dn(\eta) \neq dN/dn(-\eta)$

v_n in Cu+Au provides insight of longitudinal eccentricity effect.
→ Measure $dN/d\eta$ and v_n at forward/backward.

2017/2/8
vn_PHENIX/QM2017 M.Shimomura
Charged particle $dN/d\eta$ (η) and $v_n(\eta)$

200 GeV

20~30%

Au+Au

Cu+Au

Cu+Cu

PHENIX preliminary

v_n PHENIX/QM2017 M.Shimomura
Charged particle $dN/d\eta$ (η) and $v_n(\eta)$

In Cu+Au

- $dN/d\eta$(Au-going) > $dN/d\eta$(Cu-going)
Charged particle $dN/d\eta$ (η) and $v_n(\eta)$

In Cu+Au

- $dN/d\eta$(Au-going) > $dN/d\eta$(Cu-going)
Charged particle $dN/d\eta (\eta)$ and $v_n(\eta)$

In Cu+Au

- $dN/d\eta$(Au-going) $> dN/d\eta$(Cu-going)
- v_n(Au-going) $> v_n$(Cu-going)
Charged particle $dN/d\eta (\eta)$ and $v_n(\eta)$

In Cu+Au
- $dN/d\eta$(Au-going) $> dN/d\eta$(Cu-going)
- v_n(Au-going) $> v_n$(Cu-going)
Possible definitions of eccentricity

\[
\epsilon_{n,\text{Au}(\text{Cu})} = \frac{\langle r^n \cos[n(\phi_{\text{Au}(\text{Cu})} - \Phi_{n,\text{Cu}+\text{Au}})] \rangle}{\langle r^n \rangle}
\]

\(\epsilon\) calculated by participant geometry with MC-Glauber model.

Three types of \(\epsilon\) are examined for eccentricity scaling.

\(\epsilon_{n,\text{Au}}\): Use only participants which belong to Au nuclei

\(\epsilon_{n,\text{Cu}}\): Use all participants (common participant \(\epsilon\))

\(\epsilon_{n,\text{Cu}+\text{Au}}\): Use only participants which belong to Cu nuclei
Forward/backward v_n vs. $dN_{ch}/d\eta$

$v_{n,\text{Au-going}} \neq v_{n,\text{Cu-going}}$

$v_n (dN/d\eta)$ at Au-going $\neq v_n (dN/d\eta)$ at Cu-going
\(\frac{v_n}{\varepsilon_n} \) do not agree.

\(\frac{v_{n,Au-going}}{\varepsilon_{n,Au}} \) and \(\frac{v_{n,Cu-going}}{\varepsilon_{n,Cu}} \) do not agree.
\(\frac{v_n}{\varepsilon_n} (2) \)

\[
\begin{align*}
\text{Cu+Au Au-going } & \varepsilon_{2,\text{Au-going}} = \varepsilon_{2,\text{Cu}} \\
\text{Cu+Au Cu-going } & \varepsilon_{2,\text{Cu-going}} = \varepsilon_{2,\text{Au}}
\end{align*}
\]

\[
\begin{align*}
\text{Cu+Au Au-going } & \varepsilon_{3,\text{Au-going}} = \varepsilon_{3,\text{Cu}} \\
\text{Cu+Au Cu-going } & \varepsilon_{3,\text{Cu-going}} = \varepsilon_{3,\text{Au}}
\end{align*}
\]

Charged hadron \(3<|\eta|<3.9 \)

\(\sqrt{s_{\text{NN}}}=200 \text{ GeV} \)

\(dN_{\text{local}}^{\text{ch}} / d\eta \)

(\(v_n,\text{Au-going} / \varepsilon_n,\text{Cu} \)) and (\(v_n,\text{Cu-going} / \varepsilon_n,\text{Au} \)) do not agree.
\[\frac{v_n}{\varepsilon_n} (3) \]

(\(v_{n,Au\text{-going}} \big/ \varepsilon_{n,CuAu}\)) and (\(v_{n,Cu\text{-going}} \big/ \varepsilon_{n,CuAu}\)) agree!
- F/B asymmetry is caused by \(dN/d\eta \) (initial energy density).
v_2 for charged hadrons at high p_T
Azimuthal anisotropy at high p_T

- v_2 measurement is same as low p_T, but reasons are different.
- v_2 at high p_T is due to initial anisotropy and parton energy loss.

[PHENIX: PRC.92.034913 (2015)]

2004 data: 800 M events

(a) Au+Au, 200 GeV Θ 0-10% 20-30% 10-20% 30-40%

(b) 40-50% 60-70% 50-60% Minimum Bias

2017/2/8 vn_PHENIX/QM2017 M.Shimomura
\(v_2 \) at high \(p_T \) in Au+Au at 200GeV

- Difference between charged hadron and \(\pi^0 \) \(v_2 \) diminishes with \(p_T \).
- Proton contribution is seen at more central collisions.
High $p_T v_2$ at different centralities

- At $p_T > 6\text{GeV/c}$, v_2's of different centralities converge.
- This is not consistent with path-length dependent energy loss, large uncertainties notwithstanding.
Upcoming improvement to high $p_T v_2$

Improvements are expected with:

- 8 times larger statistics with all 2014+2016 data. (3B \rightarrow 12+12 B)

- 2 times better RP resolution with FVTX

- Tuning EMCAL energy cut depending on p_T to increase signal tracks at high p_T.
Summary

- Energy scan
 - v_n is saturated from $\sqrt{s_{NN}}=39$ GeV up to 5 TeV.

- Forward/Backward v_n in Cu+Au
 - $dN/d\eta$(Au-going) > $dN/d\eta$(Cu-going)
 - v_n(Au-going) > v_n(Cu-going)
 - Initial geometry could be boost invariant at same $dN/d\eta$ between $-4<\eta<+4$

- v_2 for charged hadrons at high p_T
 - At higher p_T, no significant difference in v_2 between charged hadrons and π^0.
 - At p_T above 6 GeV/c, v_2 looks constant around 0.1 from centralities around 0-30% within uncertainties that will be reduced in the future.
Related PHENIX Posters

[Poster]

• **K03:NAKAGOMI Hiroshi**
 Forward/Backward asymmetry of v_n in Cu+Au at RHIC-PHENIX
Back Up
\[\varepsilon_{n,\text{Au(Cu)}} = \frac{\langle r^n \cos[n(\phi_{\text{Au(Cu)}} - \Phi_{n,\text{Cu+Au}})] \rangle}{\langle r^n \rangle} \]
- Common $\varepsilon_{n,Cu+Au}$ scales v_n at both Au-going and Cu-going.
- F/B asymmetry is caused by $dN/d\eta$ (initial energy density).
v_2 at 200, 62.4 and 39 GeV

$v_2(p_T)$ is already saturated at 39 GeV!
v_n saturation up to LHC energy

v_2, v_3 and v_4 are saturated from 39GeV up to LHC energy.
$\eta/d_{ch} \text{ local}$

$0 \leq d_{ch} \leq 200$ GeV

$0.01 \leq v_3 \leq 0.04$

Charged hadron

$|\eta|<0.35$, $0<p_T<3$ GeV/c

$\sqrt{s_{NN}}=200$ GeV

Au+Au PHENIX PRL 107 252301

Cu+Au PHENIX PRC 94 054910

PHENIX preliminary
v3 vs. p_T for AuAu/CuAu

- Weak centrality dependence in AuCu
- CuAu is always bigger than AuAu.
Mid-rapidity v_2/ε_2

- Au+Au 200GeV
- Cu+Au 200GeV
- Cu+Cu 200GeV

Charged hadron v_2 $|\eta|<0.35$

MC-Glauber

Mid-rapidity v_3/ε_3

- Au+Au 200GeV
- Cu+Au 200GeV

Charged hadron v_3 $|\eta|<0.35$

MC-Glauber

PHENIX preliminary
Weighted N_{part} scaling: $N_{\text{part}} = w N_{\text{part,Au}} + (2-w) N_{\text{part,Cu}} \quad (2 N_{\text{part,Cu}} < N_{\text{part}} < 2 N_{\text{part,Au}})$

Cu-going side $dN/d\eta$

Au-going side $dN/d\eta$
\(v_n / (\varepsilon_n^* N_{\text{part}}^{1/3}) \) in Cu+Au (mid-rapidity)

[PRC.92.034913]
[PRC94,054910]
$\varepsilon_3^* N_{\text{part}}^{(1/3)}$ scaling for v_3

$\varepsilon_3^* N_{\text{part}}^{(1/3)}$ scaling works well in v_3.

arxiv:1509.07784
Scaling

- Different Energy and System (AuAu200, CuCu200, AuAu62)
- Different Centrality (0-50%)
- Different particles (π / K / p)

$$v_2(K_{ET}/n_q)/n_q/\varepsilon/N_{part}^{1/3}$$

Almost scale to one curve.