Charge Asymmetry Dependence of Anisotropic Flow in pPb and PbPb collisions with CMS

- and its implication to the Chiral Magnetic Wave

Sang Eon Park
Rice University, Houston TX
On behalf of CMS collaboration

Quark Matter Conference, Chicago- Feb. 7 (2017)
Strong Magnetic Field in heavy-ion collisions

- Strong B field in non-central collisions
 - RHIC - 10^{19} Gauss
 - LHC – $14 \times$ RHIC
 - Induces number of novel quantum phenomena in QGP

- Chiral anomaly in QCD
Imbalance in left/right handed quarks + Magnetic Field

\[\vec{J} = \frac{e^2}{2\pi^2} \mu_5 \vec{B} \]
Anomalous Chiral Effects

Analogous to Ohm’s law \[\vec{J} = \sigma \vec{E} \]

\[\vec{j}_V = \frac{N_c e}{2\pi^2} \mu_A \vec{B} \]

\[\vec{j}_A = \frac{N_c e}{2\pi^2} \mu_V \vec{B} \]

- **Chiral Magnetic Effect (CME)**
 - Vector charge separation along B (electric)

- **Chiral Separation Effect (CSE)**
 - Axial charge separation along B
Probing (novel (long, range (correlation on (phenomena (in (pPb (collision with (identified (particles (at (CMS (Zhenyu 'Chen (Rice 'University) for (the (CMS (Collaboration)) for (the (CMS (Collaboration))

Hot Quarks Workshop 2014

07/02/2017

Coupling of electric and axial charge densities

\[
\left(\partial_0 \mp \partial_1 v_\chi - D_L \partial_1^2 \right) j_L^{0, R} = 0
\]
Chiral Magnetic Wave

\[j_A = \frac{N_c e}{2\pi^2} \mu_v B \]

\[j_v = \frac{N_c e}{2\pi^2} \mu_A B \]

Coupling of electric and axial charge densities

\[(\partial_0 \pm \partial_1 \nu_{\chi} - D_L \partial_1^2) j_L^0, R = 0 \]
Event-by-Event fluctuating charge asymmetry parameter

\[A_{\text{ch}} = \frac{N^+ - N^-}{N^+ + N^-} \]
Event-by-Event fluctuating charge asymmetry parameter

\[A_{ch} = \frac{N^+ - N^-}{N^+ + N^-} \]
Event-by-Event fluctuating charge asymmetry parameter

\[A_{ch} = \frac{N^+ - N^-}{N^+ + N^-} \]
Event-by-Event fluctuating charge asymmetry parameter

\[A_{ch} = \frac{N^+ - N^-}{N^+ + N^-} \]

\[\frac{d(N_+ - N_-)}{d\phi} = (\bar{N}_+ - \bar{N}_-)[1 - r_e \cos(2\phi)] \]

\[\frac{dN_{\pm}}{d\phi} = \bar{N}_{\pm} [1 + (2v_2 + r_e A) \cos(2\phi)] \]

\[\nu_{2,\pm} \approx \nu_{base,2,\pm} \mp r_e A_{ch} / 2 \]
Previous Measurements

STAR

ALICE
(Phys.Rev. C93 (2016))
1. CMW in a smaller system (pPb)

\[\langle (eB)^2 \cos[2(\psi_B - \Psi_{RP})] \rangle \]

Smaller B field B field direction ≠ Reaction Plane

arXiv:1610.00263
Z.Tu’s talk at 3pm!
2. Third Order Harmonics

- CMW mechanism predicts the slope of the third harmonic to be zero
- Orientation of the triangular flow has no correlation with RP
- Measurement of v_3 slope in PbPb - crucial in testing CMW
1. CMW in pPb and PbPb

Significant nonzero slope observed in pPb: Challenges CMW!
1. CMW in pPb and PbPb

Significant nonzero slope observed in pPb: Challenges CMW!
1. CMW in pPb and PbPb

![Graph showing CMS preliminary data]

- **Similar normalized pPb and PbPb Slope**
- In all multiplicity ranges

Challenges CMW

- pPb $\sqrt{s_{NN}} = 5.02$ TeV
- PbPb $\sqrt{s_{NN}} = 5.02$ TeV

Graph Details

- $0.3 \leq p_T < 3.0$ GeV/c
- $r_{\text{norm}}(v_2)$
- $N_{\text{trk}}^{\text{offline}}$
- $N_{\text{trk}}^{\text{offline}}$ vs $r_{\text{norm}}(v_2)$

07/02/2017
Sang Eon Park – QM 2017, Chicago
Neutral cluster decays locally into charged pairs with a certain η separation
Clusters with small $P_T \rightarrow$ More likely to contribute to A_{ch}

A. Bzdak, P. Bozek
Local Charge Conservation

When P_T is small, V_2 is proportional to P_T

07/02/2017
Sang Eon Park – QM 2017, Chicago
1. Clusters with small $P_T \rightarrow$ More likely to contribute to A_{ch}
2. When P_T is small, $V2$ is proportional to P_T

\[v_{2, \pm}^{\pm} \sim v_{2, \pm}^{base} \mp r_e A_{ch}/2 \]
1. Clusters with small P_T → More likely to contribute to A_{ch}
2. When P_T is small, V_3 is proportional to P_T

Larger A_{ch}

More h^+ with small P_T

Less h^- with small P_T

Smaller V_3 for h^+

Larger V_3 for h^-

V_3 has same A_{ch} dependence as V_2
Prediction of LCC

- LCC predicts the same pattern as in V_2 vs A_{ch} for P_T as a function of A_{ch}

- $(V_3 \text{ slope})/(V_2 \text{ slope}) \sim V_3/V_2$ - Same after normalizing
 - CMW predicted no V_3 slope
Mean PT show the same pattern as V2: Supports LCC interpretation!
Pt as a function of Ach

- The normalized PT slope of pPb and PbPb are similar
The normalized PT slope of pPb and PbPb are similar.
V₃ as a function of A_{ch}

Normalized V2 slope and V3 slope are almost identical in PbPb!
(Challenges CMW interpretation, Supports LCC interpretation)
V3 as a function of Ach

Normalized v_2 and v_3 are almost identical in all centrality ranges

- Supports LCC interpretation!

- Challenges CMW interpretation!
Summary

- Charge Asymmetry dep. of V_n measured in pPb and PbPb at CMS
 - 1. Significant nonzero v2 slope has been observed in pPb
 - 2. Normalized v2 slope parameters of PbPb and pPb are similar
 - 3. Normalized slope parameters of v2 and v3 are almost identical in PbPb
 - 4. Mean PT shows the same pattern when plotted vs Ach

- The results above support Local charge conservation interpretation and challenge CMW interpretation
Comparison of pPb and PbPb v2 slope

CMS Preliminary

$185 \leq N_{\text{trk}}^{\text{offline}} < 220$

$0.3 \leq p_T < 3.0 \text{ GeV/c}$

$|\Delta\eta| > 1$

\[
\frac{V_2^- - V_2^+}{V_2^- + V_2^+} \quad \text{ versus } \quad \text{Corrected } A_{\text{ch}}
\]

PbPb $r_{\text{norm}}^v (v_2) = 0.108 \pm 0.005$

pPb $r_{\text{norm}}^v (v_2) = 0.149 \pm 0.008$

Sang Eon Park – QM 2017, Chicago
Apple-to-apple comparison with ALICE

CMS Preliminary

Cent. 30-40%
0.2 \leq p_T < 5.0 \text{ GeV/c}
|\eta| < 0.8

\frac{V^{-} \cdot V^{+}}{V_{n}^{+} + V_{n}^{-}}

r^{\text{norm}}(ALICE) = 0.137 \pm 0.013
r^{\text{norm}}(CMS) = 0.131 \pm 0.002

Corrected A_{ch}
The distribution of Charge Asymmetry

Figure:

- **Title:** CMS Preliminary
- **Y-axis:** Observed A_{ch}
- **X-axis:** PbPb 5.02 TeV
- **Legend:**
 - Cent. 30-40%
 - $0.3 \leq p_T < 3.0$ GeV/c
 - $|\eta| < 2.4$

Details:

- The histogram shows the distribution of A_{ch} in different centrality classes and p_T ranges.
- The CMS logo and the University of Chicago logo are present.

Date: 07/02/2017

Author: Sang Eon Park – QM 2017, Chicago