PHENIX measurements of low momentum direct photons from large ion collisions as a function of beam energy and system size

Deepali Sharma
for the PHENIX Collaboration
SUNY, Stony Brook

February 7th, 2017
Direct Photon Sources in Heavy Ion Collisions

Direct photons are a unique probe
- Color blind
- Probe the full time evolution

Production of photons:

Hadron gas
- $\pi^+ + \rho^0 \rightarrow \pi^+ + \gamma$
- $\pi^+ + \pi^- \rightarrow \rho^0 + \gamma$
- $\rho^0 \rightarrow \pi^+ + \pi^- + \gamma$
- $\omega \rightarrow \pi^0 + \gamma$

QGP
- $q + \bar{q} \rightarrow g + \gamma$
- $q + g \rightarrow q + \gamma$

Need to subtract decay photons

```
\gamma, \gamma^* \text{ from A+A}
```

```
Direct
```

```
Non-thermal
```

```
Thermal
```

```
Pre-equilibrium
```

```
“Prompt” hard scattering
```

```
Quark-Gluon Plasma
```

```
Hadron Gas
```

```
Hadron Decays
```

```
\log t (fm/c)
```

Deepali Sharma | Quark Matter 2017, Chicago
Direct Photon Puzzle
large yield and large v_2 in Au+Au

- Large yield \rightarrow early emission
- Large v_2 \rightarrow late emission
Direct Photon Puzzle
large yield and large v_2 in $Au+Au$

Experimentalist can provide

- measurement of different observables:
 - Yields
 - v_2, v_3,

- Collision energy dependence:
 - 200 GeV, 62 GeV, 39 GeV

- Large systems (hot medium):
 - $Au+Au$, $Cu+Cu$, $Cu+Au$

- Small systems (cold ??):
 - $p+p$, $p+Au$, $d+Au$, ^3He+Au

New results shown in this talk

Challenging to describe large yield and large anisotropy simultaneously
Photon Measurement Techniques in PHENIX

Three independent methods at PHENIX

- **Measuring energy deposited by photons in Calorimeter**
 - Good resolution at high p_T
 - Low p_T contaminated by hadrons

- **Internal photon conversions**
 - Measure virtual photons
 - Reduction in background from π^0 Dalitz decays by a factor of 5
 - Low p_T reach is limited (~ 1 GeV) as well as high p_T

- **External photon conversions**
 - Measure real photons
 - Extends to $p_T << 1$ GeV, little hadron contamination
 - High p_T reach is limited
Photon Measurement Techniques in PHENIX

Three independent methods at PHENIX

- Measuring energy deposited by photons in Calorimeter
 - Good resolution at high p_T
 - Low p_T contaminated by hadrons
- Internal photon conversions
 - Measure virtual photons
 - Reduction in background from π^0 Dalitz decays by a factor of 5
 - Low p_T reach is limited (~ 1 GeV) as well as high p_T
- External photon conversions
 - Measure real photons
 - Extends to $p_T << 1$ GeV, little hadron contamination
 - High p_T reach is limited

PRC91 064904 (2015)

$\frac{1}{2\pi p_T} \frac{d^2 N}{dp_T dy}$ vs. p_T [GeV/c]

$\sqrt{s_{NN}} = 200$ GeV

3 independent measurements in good agreement with each other
Direct Photon in $\text{Au}+\text{Au}$ at $\sqrt{s_{NN}} = 62.4$ GeV

External Conversion Technique

- Conversions reconstructed at detector material (HBD back plane)
- $R_\gamma = N_\gamma^{incl}/N_\gamma^{hadron}$

Clear direct photon signal in $\text{Au}+\text{Au}$ at 62.4 GeV

0-20% 0-86%, $\sqrt{s_{NN}} = 62.4$ GeV

20-40% 20-40%, $\sqrt{s_{NN}} = 62.4$ GeV
Direct Photon in \(\text{Au}+\text{Au} \) at \(\sqrt{s_{NN}} = 62.4 \text{ GeV} \)

Direct photon yield:

\[
\gamma_{\text{direct}} = (R_\gamma - 1) \times \gamma_{\text{hadron}}
\]

Minimum bias unsubtracted \(\gamma_{\text{prompt}} \)

\[T_{\text{eff}} = 0.211 \pm 0.024 \pm 0.044 \text{ GeV}\]

pQCD calculations by W. Vogelsang
Direct Photon in Au+Au at $\sqrt{s_{NN}} = 39$ GeV

- Direct photon signal also seen in Au+Au at $\sqrt{s_{NN}} = 39$ GeV
- Minimum bias unsubtracted γ^{prompt} $T_{\text{eff}} = 0.177 \pm 0.031 \pm 0.068$ GeV

See poster by V. Khachatryan (EM Probes: Board L18)
Centrality Dependence of Thermal Photon Yield in Au+Au at $\sqrt{s_{NN}} = 200$ GeV

$\frac{1}{2\pi p_T} \frac{d^2N}{dp_T dy} \propto N_{\text{part}}^\alpha$, where $\alpha = 1.38 \pm 0.03(\text{stat}) \pm 0.07(\text{syst})$

- Yield grows faster than N_{part}
- $T_{\text{eff}} = 0.244 \pm 0.028 \pm 0.007$ GeV

PRC91 064904 (2015)
Direct Photon v_n in Au+Au at $\sqrt{s_{NN}} = 200$ GeV

PRC94 064901 (2016)

- Sizeable v_2 and $v_3(\sim v_2/2)$ observed at low p_T, comparable to hadron v_2
- Strong centrality dependence for v_2, not so clear for v_3
- Unclear if $v_2 \rightarrow 0$ for $p_T \rightarrow 0$
Direct Photon in Cu+Cu at $\sqrt{s_{NN}} = 200$ GeV

- Analysis done using internal conversion method
- Clear direct photon signal in Cu+Cu at $\sqrt{s_{NN}} = 200$ GeV
- T_{eff} consistent within the large uncertainty with Au+Au

See poster by T. Hoshino (EM Probes: Board J08)
Direct Photon Yield vs N_{part}

- Au+Au $\rightarrow \gamma + X$, $|y| < 0.35$
 - $\gamma_{\text{dir}} - \gamma_{\text{prompt}}$ at $\sqrt{s_{NN}} = 200$ GeV
 - γ_{dir} at $\sqrt{s_{NN}} = 62.4$ GeV
 - γ_{dir} at $\sqrt{s_{NN}} = 39$ GeV

- Cu+Cu $\rightarrow \gamma + X$, $|y| < 0.35$
 - $\gamma_{\text{dir}} - \gamma_{\text{prompt}}$ at $\sqrt{s_{NN}} = 200$ GeV

- $p_T > 1.0$ GeV

Fit = $A \times N_{\text{part}}^\alpha$

$\alpha = 1.35 \pm 0.09$

- Similar increase with N_{part} for different systems
- Yield increases faster than N_{part}

Deepali Sharma | Quark Matter 2017, Chicago
Hint of increase of T_{eff} with $\sqrt{s_{\text{NN}}}$, but also consistent with a constant fit
Good agreement with published v_2 results

- 22% of total 2014 data
- Horizontal errors are uncertainty in the p_T reconstruction of e^+e^- resulting from bremsstrahlung due to increased material budget
- Will provide high p_T coverage for both EMCal and Conversion photon methods

See poster by W.Fan (EM probes: Board F03)
Future Measurements: Different Systems

Clear signal visible in all systems
These different systems will provide interesting information

- Direct photon spectrum shape at low p_T in $p+p$
- Are there thermal photons in $p+Au$, $d+Au$, ^3He+Au systems?
- $Cu+Au$ collisions to shed light on magnetic field effects if any
Summary and Outlook

Summary

- Well established measurements of low p_T direct photons in Au+Au at 200 GeV
 - Large yield above expected contribution from pQCD
 - Centrality dependence of yield $\sim N_{\text{part}}^{1.4}$
 - Large v_2 with respect to reaction plane
- Direct photon spectra measured in Cu+Cu collisions at $\sqrt{s_{\text{NN}}}=200$ GeV and Au+Au collisions at 62.4 and 39 GeV
 - Consistent with the observed $\sim N_{\text{part}}^{1.4}$ dependence
 - Slight increase of T_{eff} with collision energy

Outlook

- Significantly improved v_n results expected from 2014 Au+Au data
- Data from different collision geometry Cu+Au (2012)
- Low momentum data from p+p (2015)
Back-Ups
Inclusive and Decay Photon ν_n in $Au+Au$ at $\sqrt{s_{NN}} = 200$ GeV

- Measure azimuthal distribution of photons relative to the reaction plane
- Results using two photon identification techniques EMCal and External conversions
- Model decay photon ν_n based on the measured $\pi^0\nu_n$
 - Other hadrons (η, η', ω) ν_n estimated from KE_T scaling
New Conversion Photon Reconstruction Technique (2014 Au+Au data)

Identify and reconstruct photons via external conversion to e^+e^- pairs

- Previous method used single e^+/e^- tracks (2010)
 - Conversions at fixed radius (Hadron Blind Detector readout plane at 60cm, ~3%)
- New method used e^+e^- pairs (>2011)
 - Conversions at any material (VTX 3rd and 4th layer, ~10%)

inclusive photon (e^+e^-) mass

Run14 AuAu @ 200 GeV, Min Bias, p_T^{min} 1.2–1.4GeV

π^0 ($e^+e^-\gamma$) mass

Run14 AuAu @ 200 GeV, Min Bias, p_T^{min} 1.2–1.4GeV

bkg/sig = 1.75%