System-size dependence of $dN_{\text{ch}}/d\eta$ at
$\sqrt{s_{\text{NN}}} = 5.02$ TeV
Over a wide η range
System-size dependence of $dN_{ch}/d\eta$ at $\sqrt{s_{NN}} = 5.02$ TeV
Over a wide η range

Overview
ALICE, data, conditions
Charged-particle pseudorapidity density
Comparison of systems
Model comparisons
Unified parameterisation of $dN_{ch}/d\eta$
Example of reasons to look forward

- Large η acceptance
- Width of dN_{ch}/dy in A–A collisions

Clear deviation from Landau–Hydro (σ_{L-C}) from top SPS and up
Clear scaling with beam rapidity from top SPS and up
ALICE

Results

- \(dN_{ch}/d\eta \) over \(-3.5 < \eta < 5\) in
 - \(pp \)
 - \(p-Pb \)
 - \(Pb-Pb \)

- Ratios
- \(dN_{ch}/dy \)
Results

- $dN_{ch}/d\eta$ over $-3.5 < \eta < 5$ in
 - pp
 - p–Pb
 - Pb–Pb
- Ratios
- dN_{ch}/dy

Detectors:

- V0
 - trigger, centrality
- ZDC
 - (note, at $z = \pm 112.5 m$) centrality
- SPD
 - $N_{ch} (|\eta| < 2)$
- FMD
 - $N_{ch} (-3.5 < \eta < -1.8 \text{ and } 1.8 < \eta < 5)$
ALICE

Results

- $dN_{\text{ch}}/d\eta$ over $-3.5 < \eta < 5$ in
 - pp
 - p–Pb
 - Pb–Pb
- Ratios
- dN_{ch}/dy

Detectors:

- V0
 - trigger, centrality
- ZDC
 - (note, at $z = \pm 112.5m$)
 - centrality
- SPD
 - N_{ch} ($|\eta| < 2$)
- FMD
 - N_{ch} ($-3.5 < \eta < -1.8$ and $1.8 < \eta < 5$)
ALICE

Results

- $dN_{\text{ch}}/d\eta$ over $-3.5 < \eta < 5$ in
 - pp
 - p–Pb
 - Pb–Pb

- Ratios

- dN_{ch}/dy

Detectors:

- V0
 - trigger, centrality

- ZDC
 - (note, at $z = \pm 112.5\,\text{m}$)
 - centrality

- SPD
 - $N_{\text{ch}} (|\eta| < 2)$

- FMD
 - $N_{\text{ch}} (-3.5 < \eta < -1.8 \text{ and } 1.8 < \eta < 5)$
ALICE

Results

- $\frac{dN_{\text{ch}}}{d\eta}$ over $-3.5 < \eta < 5$ in
 - pp
 - p–Pb
 - Pb–Pb
- Ratios
- $\frac{dN_{\text{ch}}}{dy}$

Detectors:

- V0
 - trigger, centrality
- ZDC
 - (note, at $z = \pm 112.5 m$)
 - centrality
- SPD
 - $N_{\text{ch}} (|\eta| < 2)$
- FMD
 - $N_{\text{ch}} (-3.5 < \eta < -1.8 \text{ and } 1.8 < \eta < 5)$
A wealth of data

Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV

- 3 weeks of data taking in 2015
- $\approx 150\ M$ events
- Here, only low-intensity beams
 - Small pile-up background
 - Analysis not statistics limited
A wealth of data

Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV
- 3 weeks of data taking in 2015
- ≈ 150 M events
- Here, only low-intensity beams
 - Small pile-up background
 - Analysis not statistics limited

p–Pb, $\sqrt{s_{NN}} = 5.02$ TeV
- 11 days of data taking in 2013
- ≈ 130 M events (MB)
A Large Ion Collider Experiment

A wealth of data

Pb–Pb, $\sqrt{s_{\text{NN}}} = 5.02$ TeV
- 3 weeks of data taking in 2015
- ≈ 150 M events
- Here, only low-intensity beams
 - Small pile-up background
 - Analysis not statistics limited

p–Pb, $\sqrt{s_{\text{NN}}} = 5.02$ TeV
- 11 days of data taking in 2013
- ≈ 130 M events (MB)

pp, $\sqrt{s} = 5.02$ TeV
- 5 days of data taking in 2015
- ≈ 130 M events
Collision classification

Pb–Pb

- Centrality classes from sum $V0$ amplitudes ($V0M$)
- Fractions of hadronic cross section

p–Pb

- Centrality classes from Pb–side $V0$ ($V0A$) and neutrons on same side (ZNA)
- Fractions of hadronic cross section

pp

- Inelastic cross-section and $N_{ch}|\eta|<1 \geq 1$
Pb–Pb collisions

\[
\frac{dN_{\text{ch}}}{d\eta} \quad \text{ALICE}
\]

\[
10^3
\]

\[
10^2
\]

\[
\eta \quad \text{0– 5 %}
\]

\[
5–10 %
\]

\[
10–20 %
\]

\[
20–30 %
\]

\[
30–40 %
\]

\[
40–50 %
\]

\[
50–60 %
\]

\[
60–70 %
\]

\[
70–80 %
\]

\[
80–90 %
\]

\[
Pb–Pb \quad \sqrt{s_{NN}} = 5.02 \text{ TeV}
\]

ALI–PUB–115086

- 10 centrality classes from 0% to 90% [arXiv:1612.08966]
- Selection based on sum signal in V0 (V0M)
p–Pb collisions

Laboratory pseudorapidity
- 7 centrality classes from 0% to 100%
- Pb-going: +\(\eta\), p-going: -\(\eta\), \(y_{CM} = 0.465\)
- Selection based on signal in V0 on Pb-going side (V0A)

\(\sqrt{s_{NN}} = 5.02\) TeV

ALI-PREL-99853
pp collisions

Inelastic collisions with at least one charged particle in $|\eta| < 1$

- Minimize systematic uncertainties due to normalisation

ALI-PREL-118144

- Data (symmetrised)
- Reflected
- Uncorr. syst. unc.

ALICE

Preliminary Data (symmetrised)

Reflected

Uncorr. syst. unc.

Corr. syst. unc.

pp $\sqrt{s} = 5.02$ TeV

INEL > 0

ALICEdNch/d\eta

- $dN_{ch}/d\eta$
- η
- $\eta = -5 -4 -3 -2 -1 0 1 2 3 4 5$

ALICE© | QM’17 | 7. Feb, 2017 | C.H.Christensen
Dividing by pp baseline

\[r_X = \frac{dN_{ch}/d\eta|_X}{dN_{ch}/d\eta|_{pp}} \]

Pb–Pb
- 2 orders of magnitude over pp
- Increase as \(\eta \to 0 \)
Dividing by pp baseline

\[r_X = \frac{dN_{ch} / d\eta|_X}{dN_{ch} / d\eta|_{pp}} \]

Pb–Pb
- 2 orders of magnitude over pp
- Increase as \(\eta \to 0 \)
- Scale by \(2/N_{\text{part}} \) (Glauber)
Dividing by pp baseline

\[r_X = \frac{dN_{ch}/d\eta|_X}{dN_{ch}/d\eta|_{pp}} \]

Pb–Pb
- 2 orders of magnitude over pp
- Increase as \(\eta \to 0 \)
- Scale by \(2/N_{\text{part}} \) (Glauber)

P–Pb
- Centrality: V0A
- 1 order of magnitude over pp
- Near-linear increase from p-going to Pb-going side
Nuclear modification per binary collision versus η

\[
\frac{1}{N_{\text{coll}}} \frac{dN_{\text{ch}}/d\eta}{dN_{\text{ch}}/d\eta}_{\text{pp}}
\]

Pb–Pb
- N_{coll}: Glauber
- \uparrow as $\eta \to 0$

p–Pb
- N_{coll}: Hybrid model
- Centrality: ZNA
- Near-linear \uparrow from p- to Pb-going side
- Consistent with independent proton-nucleon scatterings
 (see PRC72(2005)034907, PRL39(1977)1120)
Model's change in particle production

\[r_X = \frac{dN_{\text{ch}}/d\eta|_X}{dN_{\text{ch}}/d\eta|_{pp}} \]

pp, p–Pb, & Pb–Pb from same model

HIJING

► Pb–Pb/pp far flatter
► p–Pb/pp non-linear

\[\sqrt{s_{NN}} = 5.02 \text{ TeV} \]

ALICE

Preliminary

Pb–Pb, pp

P–Pb, pp

p–Pb (V0A), pp

Data

HIJING
Model’s change in particle production

\[r_X = \frac{dN_{ch}/d\eta|_X}{dN_{ch}/d\eta|_{pp}} \]

pp, p–Pb, & Pb–Pb from same model

HIJING

► Pb–Pb/pp far flatter
► p–Pb/pp non-linear

EPOS-LHC

► Pb–Pb/pp more curved
► p–Pb/pp non-linear
Model's change in particle production

\[r_X = \frac{dN_{ch}/d\eta|_X}{dN_{ch}/d\eta|_{pp}} \]

pp, p–Pb, & Pb–Pb from same model

HIJING
- Pb–Pb/pp far flatter
- p–Pb/pp non-linear

EPOS-LHC
- Pb–Pb/pp more curved
- p–Pb/pp non-linear

HIJING, EPOS-LHC does not reproduce data
Express $dN_{\text{ch}}/d\eta$ in terms of dN_{ch}/dy

$$\frac{dN}{dy} = \frac{1}{\langle \beta \rangle} \frac{dN_{\text{ch}}}{d\eta}$$

$$y \approx \eta - \cos \vartheta/(2a^2)$$

$$\langle \beta \rangle \approx \frac{1}{\sqrt{1 + 1/(a^2 \cosh^2 \eta)}}$$

a: effective p_T/m

(assumed $da/d\eta =$ constant, equal for all particle species)

Ansatz: For symmetric: dN_{ch}/dy Gaussian

$$\frac{dN_{\text{ch}}}{d\eta} = \langle \beta \rangle A/(\sqrt{2\pi}\sigma)e^{-\frac{y^2}{2\sigma^2}}$$
Express $dN_{ch}/d\eta$ in terms of dN_{ch}/dy

$$dN/dy = \frac{1}{\langle \beta \rangle} \frac{dN_{ch}}{d\eta}$$

$$y \approx \eta - \cos \vartheta / (2a^2)$$

$$\langle \beta \rangle \approx \frac{1}{\sqrt{1 + 1/(a^2 \cosh^2 \eta)}}$$

a: effective p_T/m

(assumed $da/d\eta =$ constant, equal for all particle species)

Ansatz: For symmetric: dN_{ch}/dy Gaussian

$$\frac{dN_{ch}}{d\eta} = \langle \beta \rangle A/(\sqrt{2\pi} \sigma) e^{-y^2/(2\sigma^2)}$$

Pb–Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

0– 5 %

5–10 %

10–20 %

20–30 %

30–40 %

40–50 %

50–60 %

60–70 %

70–80 %

80–90 %

Data (symmetrised)

Reflected

Uncorr. syst. unc.

Corr. syst. unc.
Express \(\frac{dN_{\text{ch}}}{d\eta} \) in terms of \(\frac{dN_{\text{ch}}}{dy} \)

\[
dN/dy = \frac{1}{\langle \beta \rangle} dN_{\text{ch}}/d\eta
\]

\[
y \approx \eta - \cos \vartheta / (2a^2)
\]

\[
\langle \beta \rangle \approx \frac{1}{\sqrt{1 + 1/(a^2 \cosh^2 \eta)}}
\]

\(a \): effective \(p_T/m \)

(assumed \(da/d\eta = \) constant, equal for all particle species)

Ansatz: For symmetric: \(\frac{dN_{\text{ch}}}{dy} \) Gaussian

\[
\frac{dN_{\text{ch}}}{d\eta} = \langle \beta \rangle A / (\sqrt{2\pi}\sigma) e^{-y^2/(2\sigma^2)}
\]
Express $dN_{ch}/d\eta$ in terms of dN_{ch}/dy

$$dN/dy = \frac{1}{\langle \beta \rangle} dN_{ch}/d\eta$$

$$y \approx \eta - \cos \vartheta/(2a^2)$$

$$\langle \beta \rangle \approx \frac{1}{\sqrt{1 + 1/(a^2 \cosh^2 \eta)}}$$

a: effective p_T/m
(assumed $da/d\eta = \text{constant}$, equal for all particle species)

Ansatz: For symmetric: dN_{ch}/dy Gaussian

$$\frac{dN_{ch}}{d\eta} = \langle \beta \rangle A/(\sqrt{2\pi}\sigma) e^{-y^2/(2\sigma^2)}$$

Ansatz: For asymmetric $A \rightarrow (\alpha y + A)$

$$\frac{dN_{ch}}{d\eta} = \langle \beta \rangle (\alpha y + A)/(\sqrt{2\pi}\sigma) e^{-y^2/(2\sigma^2)}$$

Here, y in centre-of-mass
Express $dN_{\text{ch}}/d\eta$ in terms of dN_{ch}/dy

\[
\frac{dN}{dy} = \frac{1}{\langle \beta \rangle} \frac{dN_{\text{ch}}}{d\eta}
\]

\[
y \approx \eta - \cos \vartheta/(2a^2)
\]

\[
\langle \beta \rangle \approx \frac{1}{\sqrt{1 + 1/(a^2 \cosh^2 \eta)}}
\]

a: effective p_T/m

(assumed $da/d\eta =$ constant, equal for all particle species)

Ansatz: For symmetric: dN_{ch}/dy Gaussian

\[
\frac{dN_{\text{ch}}}{d\eta} = \langle \beta \rangle A/(\sqrt{2\pi}\sigma)e^{-y^2/(2\sigma^2)}
\]

Ansatz: For asymmetric $A \to (\alpha y + A)$

\[
\frac{dN_{\text{ch}}}{d\eta} = \langle \beta \rangle (\alpha y + A)/(\sqrt{2\pi}\sigma)e^{-y^2/(2\sigma^2)}
\]

Here, y in centre-of-mass
Width in y and lower-bound p_T/m estimate

$\langle N_{\text{part}} \rangle$

$\sigma dN_{\text{ch}}/dy$

Fit parameters
Also for EPOS-LHC

Width

- σ consistent with estimate from p_T spectra and $dN_{\text{ch}}/d\eta$ [arXiv:1612.08966]
Width in y and lower-bound p_T/m estimate

Fit parameters
Also for EPOS-LHC

Width
- σ consistent with estimate from p_T spectra and $dN_{ch}/d\eta$ [arXiv:1612.08966]

Effective $p_T/m = a$
- Hint of moderate increase
- $\langle m \rangle$ from Pb–Pb at $\sqrt{s_{NN}} = 2.76$ TeV particle ratios
 (see PRC88,044910)
- Note $a < \langle p_T \rangle / \langle m \rangle$
 Illustrated by EPOS-LHC w/open markers and lines
Back-of-the-envelope estimate of energy density

Bjorken formula

\[\varepsilon_{\text{Bj}}^{\tau} = \frac{1}{S_T} \frac{dE_T}{dy} \]

Approximations

\[\frac{dE_T}{dy} \approx 2 \langle m_T \rangle \frac{dN_{\text{ch}}}{dy} \]

\[\geq 2 \langle m \rangle \sqrt{1 + \left(\frac{p_T}{m}\right)^2} \frac{dN_{\text{ch}}}{dy} \]

\(S_T \) from Glauber
Back-of-the-envelope estimate of energy density

Bjorken formula

\[\varepsilon_{Bj} \tau = \frac{1}{S_T} \frac{dE_T}{dy} \]

Approximations

\[\frac{dE_T}{dy} \approx 2 \langle m_T \rangle \frac{dN_{ch}}{dy} \]

\[\gtrsim 2 \langle m \rangle \sqrt{1 + \left(\frac{p_T}{m}\right)^2} \frac{dN_{ch}}{dy} \]

\[S_T \text{ from Glauber} \]

Transverse area – Two extremes

- Union of participant areas
- Intersect of participant areas

- \(\sigma_{NN} = 70 \text{ mb} \)
- Black-disc protons
- Spatial overlap resolution 0.1 fm
- SX1(2015)13
Back-of-the-envelope estimate of energy density

Bjorken formula

\[\varepsilon_{Bj} = \frac{1}{S_T} \frac{dE_T}{dy} \]

\[\geq \varepsilon_{LB} = \frac{1}{S_T} 2 \sqrt{1 + \left(\frac{p_T}{m} \right)^2} \frac{dN_{ch}}{dy} \]

Approximations

\[\frac{dE_T}{dy} \approx 2 \langle m_T \rangle \frac{dN_{ch}}{dy} \]

\[\geq 2 \langle m \rangle \sqrt{1 + \left(\frac{p_T}{m} \right)^2} \frac{dN_{ch}}{dy} \]

\(S_T \) from Glauber

Transverse area – Two extremes

\[\bigcup \text{part.} \]
Union of participant areas

\[\bigcap \text{part.} \]
Intersect of participant areas

- \(\sigma_{NN} = 70 \text{ mb} \)
- Black-disc protons
- Spatial overlap resolution 0.1 fm
- SX1(2015)13
The lower-bound of ε_{Bj}

ALICE Preliminary, $\sqrt{s_{NN}} = 5.02$ TeV

- pp
- p–Pb
- Pb–Pb

Glauber area
- $\cup_{\text{part.}}$
- $\cap_{\text{part.}}$

ALI-PREL-118385

- Large level variation depending on area model, but features constant:
 - Fixed energy density at fixed N_{part}
 - Except for central p–Pb
 - For $\cup_{\text{part.}}$, large increase over pp

$\langle N_{\text{part}} \rangle$
The lower-bound of ε_{Bj}

- Large level variation depending on area model, but features constant:
 - Fixed energy density at fixed N_{part}
 - Except for central p–Pb
 - For \cup part, large increase over pp
- Same trend as $\varepsilon_{Bj}\tau$ in Pb–Pb $\sqrt{s_{NN}} = 2.76$ TeV (PRC94(2016)034903)
The lower-bound of ε_{Bj}

- **ALICE Preliminary, $\sqrt{s_{NN}} = 5.02$ TeV**
 - $\varepsilon_{LB} \tau$ (GeV/fm2)
 - 10^2
 - 10^1
 - 10^{-1}
 - 10^{-2}

- Glauber area
 - \cup part.
 - \cap part.

- **ALI-PREL-118408**
 - Large *level* variation depending on area model, but features constant:
 - Fixed energy density at fixed N_{part}
 - Except for central p–Pb
 - For \cup part, large increase over pp
 - Same trend as $\varepsilon_{Bj} \tau$ in Pb–Pb $\sqrt{s_{NN}} = 2.76$ TeV (PRC94(2016)034903)
 - If same initial ε in systems, then similar final state effects?
Summary

Charged-particle pseudorapidity density
- Measured in $\sqrt{s_{NN}} = 5.02$ TeV collisions over a wide η range for 3 systems
 - Pb–Pb versus centrality
 - p–Pb versus centrality
 - pp w.r.t. INEL>0 visible cross-section

Ratios of Pb–Pb, p–Pb to pp
- Pb–Pb peaked near $\eta = 0$ than pp, increase in N_{ch}
- p–Pb exhibit triangular shape, consistent with independent nucleon-nucleon scatterings
- HIJING, EPOS-LHC cannot reproduce data

Charged-particle rapidity density
- Pb–Pb, pp Gaussian
- p–Pb modified by linear factor in y
- Lower-bound estimates of energy density show $\times 10$ increase in Pb–Pb over pp, p–Pb more moderate
Backups
dN_{ch}/dy in Pb–Pb at \(\sqrt{s_{NN}} = 5.02 \) TeV

\[\sqrt{s_{NN}} = 5.02 \text{ TeV} \]

0–5% Pb–Pb

ALICE

Data (symmetrised)

Reflected

Uncorr. syst. unc.

Corr. syst. unc.

Gaussian fit

Double-Gaussian fit

Landau-Carruthers

Landau-Wong

▷ [arXiv:1612.08966]

▷ Direct evaluation of \(\langle J \rangle = \langle \beta \rangle \) from \(p_T \)-spectra in Pb–Pb at \(\sqrt{s_{NN}} = 2.76 \) TeV
Fit of $dN_{ch}/d\eta$ distributions

Pb–Pb $\sqrt{s_{NN}} = 5.02$ TeV

0–5%
5–10%
10–20%
20–30%
30–40%
40–50%
50–60%
60–70%
70–80%
80–90%

Data (symmetrised)
Reflected
Uncorr. syst. unc.
Corr. syst. unc.

ALI-PREL-118212
Fit of $dN_{ch}/d\eta$ distributions
Fit of $dN_{ch}/d\eta$ distributions

ALICE
Preliminary

$pp \ \sqrt{s} = 5.02 \text{ TeV}$

INEL > 0

Data (symmetrised)

Reflected

Uncorr. syst. unc.

Corr. syst. unc.
Fit of EPOS-LHC $dN_{ch}/d\eta$ distributions

Pb–Pb $\sqrt{s_{NN}} = 5.02$ TeV

0– 5 %
5–10 %
10–20 %
20–30 %
30–40 %
40–50 %
50–60 %
60–70 %
70–80 %
80–90 %

ALICE
Simulation

η

10^3
10^2
10

EPOS-LHC

ALI-SIMUL-118290
Fit of EPOS-LHC $dN_{\text{ch}}/d\eta$ distributions

p–Pb $\sqrt{s_{NN}} = 5.02$ TeV

V0A

0–5%

5–10%

10–20%

20–40%

40–60%

60–80%

80–100%

ALICE Simulation

EPOS-LHC

ALI-SIMUL-118277
Fit of EPOS-LHC $dN_{ch}/d\eta$ distributions

ALICE Simulation

pp $\sqrt{s} = 5.02$ TeV

INEL > 0

EPOS-LHC